[Si II], [Fe II], [C II], and H2 Emission from Massive Star-forming Regions

We calculate the [Si II] 34.8 μm, [Fe II] 26.0 μm, and [C II] 158 μm infrared fine-structure emission that may arise from ionized gas (H II regions) and/or associated neutral gas (photodissociation regions [PDRs]) in massive star-forming regions. Assuming thermal pressure balance between an H II region and a PDR, the relative amounts of fine-structure line emission from the H II region and PDR depend on the electron density and resulting thermal pressure in the H II region, gas-phase abundances of the emitting species, and the UV spectrum from the stellar population producing the H II region. For normal metallicity, we find that [C II] emission is always dominated by PDRs, while [Si II] and [Fe II] are dominated by PDRs for H II regions with electron density ne ≳ 10 cm-3. We also calculate the H2 0-0 S(0), 0-0 S(1), 0-0 S(2), and 0-0 S(3) pure rotational line emission arising from the PDR at the atomic-to-molecular interface. The overall intensity of the H2 line emission directly traces warm molecular mass, while H2 line ratios constrain the PDR temperature, gas density, and far-ultraviolet field strength. Models of the integrated emission of [Si II], [Fe II], [C II], and H2 from Galactic and extragalactic star-forming regions are presented for use in interpreting observations with Spitzer, ISO, SOFIA, and the Herschel Space Observatory. We compare our results with observations of the Galactic source NGC 2023 (an individual H II/photodissociation region in Orion), the inner regions of the Milky Way, and the central regions of the nearby star-forming spiral galaxy NGC 7331. We also compare our results with recently published similar work by Abel and coworkers.

[1]  G. Ferland,et al.  The H II Region/PDR Connection: Self-consistent Calculations of Physical Conditions in Star-forming Regions , 2005, astro-ph/0506514.

[2]  B. Draine,et al.  H2 Pure Rotational Lines in the Orion Bar , 2005, astro-ph/0506003.

[3]  G. Ferland,et al.  Molecular Hydrogen in Star-forming Regions: Implementation of its Microphysics in CLOUDY , 2005, astro-ph/0501485.

[4]  L. Kewley,et al.  Spitzer Infrared Nearby Galaxies Survey (SINGS) Imaging of NGC 7331: A Panchromatic View of a Ringed Galaxy , 2004 .

[5]  J. Lauroesch,et al.  Interstellar Carbon in Translucent Sight Lines , 2004, astro-ph/0401510.

[6]  L. Observatory,et al.  Molecular inventories and chemical evolution of low-mass protostellar envelopes , 2003, astro-ph/0312231.

[7]  C. M. Walmsley,et al.  Some empirical estimates of the H 2 formation rate in photon-dominated regions , 2004 .

[8]  A. Sternberg,et al.  Ionizing Photon Emission Rates from O- and Early B-Type Stars and Clusters , 2003, astro-ph/0312232.

[9]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[10]  D. Hollenbach,et al.  Time Dependence of the Ultraviolet Radiation Field in the Local Interstellar Medium , 2002, astro-ph/0202196.

[11]  The Neutral Atomic Phases of the ISM in the Galaxy , 2002, astro-ph/0207098.

[12]  J. L. Bourlot,et al.  D/HD transition in Photon Dominated Regions (PDR) , 2002 .

[13]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.

[14]  S. Malhotra,et al.  The Interstellar Medium of Star-forming Irregular Galaxies: The View with ISO , 2000, astro-ph/0012354.

[15]  M. Harwit,et al.  Implications of Submillimeter Wave Astronomy Satellite Observations for Interstellar Chemistry and Star Formation , 2000 .

[16]  M. Mccartney,et al.  Fluorescent H2 in the reflection nebula NGC 2023 - I. Recent observations , 1999 .

[17]  NASA Ames Research Center,et al.  Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions , 1999, astro-ph/9907255.

[18]  J. L. Bourlot,et al.  The cooling of astrophysical media by H2 , 1999 .

[19]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[20]  È. Roueff,et al.  Vibrational relaxation in H - collisions , 1998 .

[21]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[22]  T. Geballe,et al.  Near-IR Fluorescent Molecular Hydrogen Emission from NGC 2023 , 1998, Publications of the Astronomical Society of Australia.

[23]  T. Steiman-Cameron,et al.  Physical Conditions in the Photodissociation Region of NGC 2023 , 1997 .

[24]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[25]  The abundance of interstellar nitrogen , 1996, astro-ph/9710162.

[26]  F. Bertoldi,et al.  Structure of Stationary Photodissociation Fronts , 1996, astro-ph/9603032.

[27]  P. Martin,et al.  Analytic Temperature Dependences for a Complete Set of Rate Coefficients for Collisional Excitation and Dissociation of H2 Molecules by H Atoms , 1995 .

[28]  C. Heiles On the Origin of the Diffuse C + 158 Micron Line Emission , 1994 .

[29]  M. R. Haas,et al.  The interstellar medium in the starburst regions of NGC 253 and NGC 3256 , 1994 .

[30]  E. L. Wright,et al.  MORPHOLOGY OF THE INTERSTELLAR COOLING LINES DETECTED BY COBE , 1993, astro-ph/9311032.

[31]  R. Kennicutt,et al.  Abundances of H II regions in early-type spiral galaxies , 1993 .

[32]  Peter G. Martin,et al.  Collisional excitation of H2 molecules by H atoms , 1993 .

[33]  A. Tielens,et al.  Mid-infrared rotational line emission from interstellar molecular hydrogen , 1992 .

[34]  Robert David Blum,et al.  Rate coefficients for the excitation of infrared and ultraviolet lines in C II, N III, and O IV , 1992 .

[35]  Charles L. Bennett,et al.  Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE) , 1991 .

[36]  A. Tielens,et al.  Low-Density Photodissociation Regions , 1991 .

[37]  T. Nakagawa,et al.  Large-scale forbidden C II 158 micron emission from the Galaxy , 1991 .

[38]  D. Jaffe,et al.  Parsec-scale penetration of ultraviolet photons into molecular clouds - (C II) 158 micron mapping of W3, NGC 1977, and NGC 2023 , 1991 .

[39]  A. Tielens,et al.  Line emission from clumpy photodissociation regions , 1990 .

[40]  A. Tielens,et al.  Physical Conditions in Photodissociation Regions - Application to Galactic Nuclei , 1990 .

[41]  A. Sternberg,et al.  The infrared response of molecular hydrogen gas to ultraviolet radiation: high-density regions , 1989 .

[42]  J. Black,et al.  Fluorescent excitation of interstellar H2 , 1987 .

[43]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[44]  S. Pottasch,et al.  The galactic abundance gradient. , 1983 .

[45]  J. Kasper,et al.  An experimental rate constant for H + H2 (ν″ = 1) → H + H2 (ν″ = 0) , 1972 .