Efficient cryptographic schemes provably as secure as subset sum

We show very efficient constructions for a pseudorandom generator and for a universal one-way hash function based on the intractability of the subset-sum problem for certain dimensions. (Pseudorandom generators can be used for private-key encryption and universal one-way hash functions for signature schemes.) The increase in efficiency in our construction is due to the fact that many bits can be generated/hashed with one application of the assumed one-way function.All of our constructions can be implemented in NC using an optimal number of processors.

[1]  Claus-Peter Schnorr,et al.  Attacking the Chor-Rivest Cryptosystem by Improved Lattice Reduction , 1995, EUROCRYPT.

[2]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[3]  Russell Impagliazzo,et al.  How to recycle random bits , 1989, 30th Annual Symposium on Foundations of Computer Science.

[4]  Moni Naor,et al.  Bit Commitment Using Pseudo-Randomness , 1989, CRYPTO.

[5]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[6]  Hugo Krawczyk,et al.  Secret Sharing Made Short , 1994, CRYPTO.

[7]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[8]  Claus-Peter Schnorr,et al.  Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.

[9]  E. Brickell,et al.  Cryptanalysis: a survey of recent results , 1988, Proc. IEEE.

[10]  Alan M. Frieze,et al.  On the Lagarias-Odlyzko Algorithm for the Subset Sum Problem , 1986, SIAM J. Comput..

[11]  David Chaum,et al.  Minimum Disclosure Proofs of Knowledge , 1988, J. Comput. Syst. Sci..

[12]  Andrew Chi-Chih Yao,et al.  Theory and Applications of Trapdoor Functions (Extended Abstract) , 1982, FOCS.

[13]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[14]  Leonid A. Levin,et al.  Pseudo-random generation from one-way functions , 1989, STOC '89.

[15]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[16]  Ronald L. Rivest,et al.  A knapsack-type public key cryptosystem based on arithmetic in finite fields , 1988, IEEE Trans. Inf. Theory.

[17]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[18]  Michael Kharitonov,et al.  Cryptographic hardness of distribution-specific learning , 1993, STOC.

[19]  Manuel Blum,et al.  How to Generate Cryptographically Strong Sequences of Pseudo Random Bits , 1982, FOCS.

[20]  Rafail Ostrovsky,et al.  Perfect Zero-Knowledge Arguments for NP Can Be Based on General Complexity Assumptions (Extended Abstract) , 1992, CRYPTO.

[21]  John Rompel,et al.  One-way functions are necessary and sufficient for secure signatures , 1990, STOC '90.

[22]  Antoine Joux,et al.  Improving the Critical Density of the Lagarias-Odlyzko Attack Against Subset Sum Problems , 1991, FCT.

[23]  Moni Naor,et al.  Universal one-way hash functions and their cryptographic applications , 1989, STOC '89.

[24]  Miklos Santha,et al.  Generating Quasi-Random Sequences from Slightly-Random Sources (Extended Abstract) , 1984, FOCS.

[25]  Jeffrey C. Lagarias,et al.  Solving low density subset sum problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[26]  Claus-Peter Schnorr,et al.  An Improved Low-Denisty Subset Sum Algorithm , 1991, EUROCRYPT.

[27]  Silvio Micali,et al.  Efficient, perfect polynomial random number generators , 2004, Journal of Cryptology.

[28]  Silvio Micali,et al.  Proofs that yield nothing but their validity and a methodology of cryptographic protocol design , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[29]  Kenneth J. Giuliani Factoring Polynomials with Rational Coeecients , 1998 .

[30]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..

[31]  Moni Naor,et al.  Bit commitment using pseudorandomness , 1989, Journal of Cryptology.

[32]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[33]  Johan Håstad,et al.  Pseudo-random generators under uniform assumptions , 1990, STOC '90.

[34]  Hugo Krawczyk,et al.  On the Existence of Pseudorandom Generators , 1988, CRYPTO.

[35]  Jeffrey C. Lagarias,et al.  One-Way Functions and Circuit Complexity , 1986, Inf. Comput..

[36]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[38]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[39]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.

[40]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[41]  Ernest F. Brickell,et al.  Solving Low Density Knapsacks , 1983, CRYPTO.

[42]  Zvi Galil,et al.  An Almost Linear-Time Algorithm for the Dense Subset-Sum Problem , 1991, SIAM J. Comput..

[43]  Adi Shamir,et al.  A TcS2 = 0 (2n) time/space tradeoff for certain NP-complete problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[44]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[45]  Ravi Kannan,et al.  Succinct Certificates for Almost All Subset Sum Problems , 1989, SIAM J. Comput..

[46]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[47]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[48]  Michael Luby,et al.  How to Construct Pseudo-Random Permutations from Pseudo-Random Functions (Abstract) , 1986, CRYPTO.

[49]  Michael Kharitonov,et al.  Cryptographic lower bounds for learnability of Boolean functions on the uniform distribution , 1992, COLT '92.

[50]  Manuel Blum,et al.  Coin Flipping by Telephone. , 1981, CRYPTO 1981.

[51]  László Babai,et al.  Random Oracles Separate PSPACE from the Polynomial-Time Hierarchy , 1987, Inf. Process. Lett..

[52]  Andrew Odlyzko,et al.  The Rise and Fall of Knapsack Cryptosystems , 1998 .