Rumen fluid metabolomics of beef steers differing in feed efficiency

[1]  M. Cosentino,et al.  Catecholamines , 2020, Reactions Weekly.

[2]  P. Myer,et al.  Rumen Bacteria and Serum Metabolites Predictive of Feed Efficiency Phenotypes in Beef Cattle , 2019, Scientific Reports.

[3]  J. Lefler,et al.  Temporal Stability of the Ruminal Bacterial Communities in Beef Steers , 2019, Scientific Reports.

[4]  P. Myer Microbiomes in ruminant protein production and food security. , 2019, CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources.

[5]  Mark P. Styczynski,et al.  Identification of a metabolomic signature associated with feed efficiency in beef cattle , 2019, BMC Genomics.

[6]  I. Ogunade,et al.  PSXIV-20 Effect of dietary monensin on rumen fluid metabolomic profile of beef cattle. , 2018, Journal of Animal Science.

[7]  I. Ogunade,et al.  Monensin Alters the Functional and Metabolomic Profile of Rumen Microbiota in Beef Cattle , 2018, Animals : an open access journal from MDPI.

[8]  R. Wirth,et al.  The Planktonic Core Microbiome and Core Functions in the Cattle Rumen by Next Generation Sequencing , 2018, Front. Microbiol..

[9]  David S. Wishart,et al.  MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis , 2018, Nucleic Acids Res..

[10]  P. Myer,et al.  Serum metabolites associated with feed efficiency in black angus steers , 2017, Metabolomics.

[11]  Ronald M. Lewis,et al.  Rumen Fluid Metabolomics Analysis Associated with Feed Efficiency on Crossbred Steers , 2017, Scientific Reports.

[12]  P. Stothard,et al.  Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake , 2016, BMC Genomics.

[13]  Fei Liu,et al.  Pathway-Based Genome-Wide Association Studies for Two Meat Production Traits in Simmental Cattle , 2015, Scientific Reports.

[14]  P. B. Pope,et al.  Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range , 2015, Scientific Reports.

[15]  P. Myer,et al.  Rumen Microbiome from Steers Differing in Feed Efficiency , 2015, PloS one.

[16]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[17]  J. Ferguson,et al.  Effects of rumen-protected γ-aminobutyric acid on feed intake, lactation performance, and antioxidative status in early lactating dairy cows. , 2013, Journal of dairy science.

[18]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[19]  Michelle F Clasquin,et al.  LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. , 2012, Current protocols in bioinformatics.

[20]  E. White,et al.  Liquid chromatography-high resolution mass spectrometry analysis of fatty acid metabolism. , 2011, Analytical chemistry.

[21]  Daniel Amador-Noguez,et al.  Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. , 2010, Analytical chemistry.

[22]  Age K. Smilde,et al.  UvA-DARE ( Digital Academic Repository ) Assessment of PLSDA cross validation , 2008 .

[23]  J. Rabinowitz,et al.  Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. , 2007, Analytical chemistry.

[24]  D. Beitz,et al.  Carbohydrate and lipid metabolism in farm animals. , 2007, The Journal of nutrition.

[25]  E. Ørskov,et al.  Causes of differences in urinary excretion of purine derivatives in buffaloes and cattle , 2006 .

[26]  A. Novelletto,et al.  Structure of human succinic semialdehyde dehydrogenase gene: identification of promoter region and alternatively processed isoforms. , 2002, Molecular genetics and metabolism.

[27]  D. Krauss,et al.  Genetic and phenotypic relationships among different measures of growth and feed efficiency in young Charolais bulls , 2001 .

[28]  P. Weimer Manipulating ruminal fermentation: a microbial ecological perspective. , 1998, Journal of animal science.

[29]  N. V. Gylswyk,et al.  Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. , 1995, International journal of systematic bacteriology.

[30]  K. Gibson,et al.  Succinic semialdehyde dehydrogenase from mammalian brain: subunit analysis using polyclonal antiserum. , 1992, The International journal of biochemistry.

[31]  G. Deutscher,et al.  Energy requirements for maintenance of crossbred beef cattle with different genetic potential for milk. , 1990, Journal of animal science.

[32]  R. Pietruszko,et al.  Human brain "high Km" aldehyde dehydrogenase: purification, characterization, and identification as NAD+ -dependent succinic semialdehyde dehydrogenase. , 1988, Archives of biochemistry and biophysics.

[33]  N. W. Flodin Handbook of Vitamins , 1987 .

[34]  R. D. Goodrich,et al.  Influence of monensin on the performance of cattle. , 1984, Journal of animal science.

[35]  J. Nolan,et al.  Nitrogen metabolism in the rumen. , 1984, Journal of dairy science.

[36]  A. P. Williams,et al.  Effect of different levels of casein, with or without formaldehyde treatment, on carbohydrate metabolism between mouth and duodenum of steers. , 1982, Journal of the science of food and agriculture.

[37]  Pearson Eg,et al.  D-xylose absorption in the adult bovine. , 1981 .

[38]  J. Young,et al.  Gluconeogenesis in ruminants: propionic acid production from a high-grain diet fed to cattle. , 1977, The Journal of nutrition.

[39]  R. H. Smith,et al.  Degradation of nucleic acid derivatives by rumen bacteria in vitro , 1973, British Journal of Nutrition.

[40]  S. Subramanian,et al.  Microbiological oxidation of the branched C5-dicarboxylic acids , 1964, Archiv für Mikrobiologie.

[41]  Robert M. Koch,et al.  Efficiency of Feed Use in Beef Cattle , 1963 .

[42]  M. S. Reynolds,et al.  Urinary and fecal elimination of B6 and 4-pyridoxic acid on three levels of intake. , 1950, The Journal of nutrition.

[43]  M. Knutsen,et al.  SYNTHESIS OF VITAMIN B IN THE RUMEN OF THE COW , 1928 .

[44]  Liu HaiJin Liu HaiJin Recommendations for controlling Newcastle disease virus by producing a highly efficient vaccine. , 2019, Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources.

[45]  L. Fontanesi Metabolomics and livestock genomics: Insights into a phenotyping frontier and its applications in animal breeding , 2016 .

[46]  M. Gnegy Chapter 14 – Catecholamines , 2012 .

[47]  Fan Zhiyong Effects of γ-Aminobutyric Acid on the Performance and Internal Hormone Levels in Growing Pigs , 2007 .

[48]  W. Weiss,et al.  Water soluble vitamins for dairy cattle. , 2006 .

[49]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[50]  R. Bitsch Vitamin B6. , 1993, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.

[51]  L. Machlin Handbook of Vitamins , 1991 .

[52]  K. Ushida,et al.  Effect of Monensin on Ruminal VFA and Gas Production of Sheep Fed High Concentrate Diet , 1985 .

[53]  C. Ferrell,et al.  Energy utilization by mature, nonpregnant, nonlactating cows of different types. , 1984, Journal of animal science.

[54]  B. Baldwin,et al.  D-xylose absorption in the adult bovine. , 1981, The Cornell veterinarian.