Constructing Approximate Shortest Path Maps in Three Dimensions

We present a new technique for constructing a data structure that approximates shortest path maps in $\Re^d$. By applying this technique, we get the following two results on approximate shortest path maps in $\Re^3$. (i) Given a polyhedral surface or a convex polytope $\P$ with n edges in $\Re^3$, a source point s on $\P$, and a real parameter $0 < \eps \leq 1$, we present an algorithm that computes a subdivision of $\P$ of size $O((n/\eps) \log( 1/\eps ))$ which can be used to answer efficiently approximate shortest path queries. Namely, given any point t on $\P$, one can compute, in $O(\log{(n/\eps)})$ time, a distance $\Delta_{\P,s}(t)$, such that $d_{\P,s}(t) \leq \Delta_{\P,s}(t) \leq (1 + \eps)d_{\P,s}(t)$, where $d_{\P,s}(t)$ is the length of a shortest path between s and t on $\P$. The map can be computed in $O(n^2 \log{n} + (n/\eps) \log{(1/\eps)} \log{(n/\eps)})$ time, for the case of a polyhedral surface, and in $O((n/\eps^3) \log ( 1/\eps ) + (n/\eps^{1.5}) \log{(1/\eps)} \log{n})$ time if $\P$ is a convex polytope. (ii) Given a set of polyhedral obstacles $\O$ with a total of n edges in $\Re^3$, a source point {\it s} in $\Re^3 {\rm \setminus \inter} \cup\scriptstyle{_{O \in \O}} O$, and a real parameter $0 < \eps \leq 1$, we present an algorithm that computes a subdivision of $\Re^3$, which can be used to answer efficiently approximate shortest path queries. That is, for any point $t \in \Re^3$, one can compute, in $O(\log{(n/\eps)})$ time, a distance $\Delta_{\O,s}(t)$ that $\eps$-approximates the length of a shortest path from {\it s} to {\it t} that avoids the interiors of the obstacles. This subdivision can be computed in roughly $O(n^4/\eps^6)$ time.

[1]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[2]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[3]  Micha Sharir,et al.  On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..

[4]  S. Suri,et al.  Practical methods for approximating shortest paths on a convex polytope in R 3 , 1995, SODA 1995.

[5]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.

[6]  Jörg-Rüdiger Sack,et al.  Approximating weighted shortest paths on polyhedral surfaces , 1997, SCG '97.

[7]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[8]  Pankaj K. Agarwal,et al.  Approximating shortest paths on a nonconvex polyhedron , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[9]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[10]  Kenneth L. Clarkson,et al.  Approximation algorithms for shortest path motion planning , 1987, STOC.

[11]  Sariel Har-Peled,et al.  Approximate shortest paths and geodesic diameters on convex polytopes in three dimensions , 1997, SCG '97.

[12]  Micha Sharir,et al.  On shortest paths amidst convex polyhedra , 1987, SCG '86.

[13]  Christos H. Papadimitriou,et al.  An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..

[14]  David G. Kirkpatrick,et al.  A Linear Algorithm for Determining the Separation of Convex Polyhedra , 1985, J. Algorithms.

[15]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[16]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[17]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[18]  Tomio Hirata,et al.  Spatial Point Location and Its Applications , 1990, SIGAL International Symposium on Algorithms.

[19]  Joseph S. B. Mitchell,et al.  A new algorithm for computing shortest paths in weighted planar subdivisions (extended abstract) , 1997, SCG '97.

[20]  Jirí Matousek,et al.  Approximations and optimal geometric divide-and-conquer , 1991, STOC '91.

[21]  David M. Mount Storing the subdivision of a polyhedral surface , 1987, Discret. Comput. Geom..

[22]  Jindong Chen,et al.  Shortest Paths on a Polyhedron , Part I : Computing Shortest Paths , 1990 .

[23]  Chee-Keng Yap,et al.  Approximate Euclidean shortest path in 3-space , 1994, SCG '94.

[24]  James A. Storer,et al.  A single-exponential upper bound for finding shortest paths in three dimensions , 1994, JACM.