Noncentrosymmetric topological Dirac semimetals in three dimensions

Heng Gao, 2 Jeremy Strockoz, Mario Frakulla, 4 Jörn W. F. Venderbos, 5, ∗ and Hongming Weng 1, † Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Department of Physics, Drexel University, Philadelphia, PA 19104, USA Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, USA Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA (Dated: February 12, 2021)

[1]  Z. K. Liu,et al.  Magnetic Weyl semimetal phase in a Kagomé crystal , 2019, Science.

[2]  A. Rappe,et al.  Topological Semimetals from First Principles , 2018, Annual Review of Materials Research.

[3]  Sheng-Jie Huang,et al.  Topological states from topological crystals , 2018, Science Advances.

[4]  Jian‐Hao Chen,et al.  Berry Curvature Enhanced Nonlinear Photogalvanic Response of Type-II Weyl Cone , 2018, 1806.08508.

[5]  L. Fu,et al.  Observation of the nonlinear Hall effect under time-reversal-symmetric conditions , 2018, Nature.

[6]  X. Dai,et al.  A new member of the topological semimetals family , 2017 .

[7]  Qianhua Xu,et al.  Observation of three-component fermions in the topological semimetal molybdenum phosphide , 2017, Nature.

[8]  V. Ozoliņš,et al.  Bi2PdO4: A Promising Thermoelectric Oxide with High Power Factor and Low Lattice Thermal Conductivity , 2017 .

[9]  S. Murakami,et al.  Emergence of topological semimetals in gap closing in semiconductors without inversion symmetry , 2016, Science Advances.

[10]  J. E. Moore,et al.  Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals , 2016, Nature Physics.

[11]  X. Dai,et al.  Topological nodal line semimetals , 2016, 1609.05414.

[12]  X. Dai,et al.  Topological semimetals predicted from first-principles calculations , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[14]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[15]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[16]  X. Dai,et al.  Exploration and prediction of topological electronic materials based on first-principles calculations , 2014, 1410.4614.

[17]  Z. J. Wang,et al.  A stable three-dimensional topological Dirac semimetal Cd3As2. , 2014, Nature materials.

[18]  Bohm-Jung Yang,et al.  Classification of stable three-dimensional Dirac semimetals with nontrivial topology , 2014, Nature Communications.

[19]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[20]  Takashi Takahashi,et al.  Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator , 2011, 1205.3654.

[21]  Q. Xue,et al.  Band structure engineering in (Bi(1-x)Sb(x))(2)Te(3) ternary topological insulators. , 2011, Nature communications.

[22]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[23]  S. Murakami Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase , 2007, 0710.0930.

[24]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[25]  Hans‐Uwe Schuster,et al.  LiBeSb und LiZnBi, ternäre Verbindungen mit Wurtzitgerüst / LiBeSb and LiZnBi, Ternary Compounds with a Wurtzit-type Lattice , 1978 .

[26]  H. Müller-Buschbaum,et al.  Notizen: Zur Kenntnis von Bi2PdO4 / About Bi2PdO4 , 1976 .

[27]  Hans‐Uwe Schuster,et al.  Notizen: LiZnSb, eine weitere ternäre Phase mit Wurtzitgerüst / LiZnSb, an Additional Ternary Phase with a Wurtzit-type Lattice , 1975 .