Response of the Skyrmion Lattice in MnSi to Cubic Magnetocrystalline Anisotropies.
暂无分享,去创建一个
C. Pfleiderer | R. Georgii | M. Garst | A. Bauer | T. Adams | C. Pfleiderer | A. Bauer
[1] H. Berger,et al. Thermodynamic evidence of a second skyrmion lattice phase and tilted conical phase in Cu2OSeO3 , 2018, Physical Review B.
[2] H. Berger,et al. Observation of two independent skyrmion phases in a chiral magnetic material , 2018, Nature Physics.
[3] P. Trtik,et al. Neutron Diffractive Imaging of the Skyrmion Lattice Nucleation in {{MnSi}} , 2018 .
[4] C. Pfleiderer,et al. The multi-purpose three-axis spectrometer (TAS) MIRA at FRM II , 2017, 1710.00589.
[5] T. Lograsso,et al. Reorientations, relaxations, metastabilities, and multidomains of skyrmion lattices , 2017, 1707.04921.
[6] Hiroshi Oike,et al. Skyrmion lattice structural transition in MnSi , 2017, Science Advances.
[7] Y. Tokura,et al. Topological domain walls in helimagnets , 2017, Nature Physics.
[8] C. Pfleiderer,et al. Symmetry breaking, slow relaxation dynamics, and topological defects at the field-induced helix reorientation in MnSi , 2016, 1611.06835.
[9] Yusuke Nambu,et al. Thermal stability and irreversibility of skyrmion-lattice phases in Cu 2 OSeO 3 , 2016, 1608.06359.
[10] H. Berger,et al. Heuristic Description of Magnetoelectricity of Cu2OSeO3. , 2016, Nano letters.
[11] J. White,et al. Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. , 2016, Nature materials.
[12] H. Berger,et al. Resonant elastic x-ray scattering from the skyrmion lattice in Cu 2 OSeO 3 , 2016, 1606.01194.
[13] H. Berger,et al. Multidomain Skyrmion Lattice State in Cu2OSeO3. , 2016, Nano letters.
[14] C. Pfleiderer,et al. Generic Aspects of Skyrmion Lattices in Chiral Magnets , 2016, 1603.08730.
[15] C. Pfleiderer,et al. Uniaxial Pressure Dependence of Magnetic Order in MnSi. , 2015, Physical review letters.
[16] Y. Tokura,et al. Uniaxial stress control of skyrmion phase , 2015, Nature Communications.
[17] K. Seemann,et al. MIRA: Dual wavelength band instrument , 2015 .
[18] M Kubota,et al. Large anisotropic deformation of skyrmions in strained crystal. , 2015, Nature nanotechnology.
[19] J. White,et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature , 2015, Nature Communications.
[20] Tim Adams. Neutronenstreuung an Skyrmionengittern in chiralen Magneten , 2015 .
[21] Y. Tokura,et al. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. , 2014, Nature materials.
[22] C. Pfleiderer,et al. Unwinding of a Skyrmion Lattice by Magnetic Monopoles , 2013, Science.
[23] L. Fritz,et al. Skyrmion lattice phase in three-dimensional chiral magnets from Monte Carlo simulations , 2013, 1304.6580.
[24] C. Pfleiderer,et al. Specific heat of the Skyrmion lattice phase and field-induced tricritical point in MnSi. , 2013, Physical review letters.
[25] R. Georgii,et al. Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu 2 OSeO 3 , 2012, 1206.5220.
[26] C. Pfleiderer,et al. Rotating skyrmion lattices by spin torques and field or temperature gradients , 2012, 1204.5051.
[27] H. Berger,et al. Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3. , 2012, Physical review letters.
[28] Y. Tokura,et al. Observation of Skyrmions in a Multiferroic Material , 2012, Science.
[29] P. Böni,et al. Long-range crystalline nature of the Skyrmion lattice in MnSi. , 2011, Physical review letters.
[30] H. Löhneysen,et al. Ultra-high vacuum compatible image furnace. , 2011, The Review of scientific instruments.
[31] P. Böni,et al. Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.
[32] E. M. Forgan,et al. Magnetic flux lines in type-II superconductors and the 'hairy ball' theorem. , 2010, Nature communications.
[33] Y. Tokura,et al. Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.
[34] P. Böni,et al. Skyrmion lattices in metallic and semiconducting B20 transition metal compounds , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[35] F. Bernlochner,et al. Helimagnon Bands as Universal Excitations of Chiral Magnets , 2009, 0907.5576.
[36] C. Pfleiderer,et al. Skyrmion lattice in the doped semiconductor Fe1-xCoxSi , 2009, 0903.2587.
[37] Robert Georgii,et al. Skyrmion Lattice Domains in Fe1−xCoxSi , 2010 .
[38] E. M. Forgan,et al. Morphology of the superconducting vortex lattice in ultrapure niobium. , 2009, Physical review letters.
[39] P. Böni,et al. Skyrmion Lattice in a Chiral Magnet , 2009, Science.
[40] P. Böni,et al. Magnetic-field induced instability surrounding the A-phase of MnSi: Bulk and SANS measurements , 2006 .
[41] E. M. Forgan,et al. Spontaneous symmetry-breaking vortex lattice transitions in pure niobium. , 2006, Physical review letters.
[42] A. Hubert,et al. Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .
[43] A. N. Bogdanov,et al. Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets , 1989 .
[44] P. Bak,et al. Theory of helical magnetic structures and phase transitions in MnSi and FeGe , 1980 .
[45] A. Hasegawa,et al. The origin of the helical spin density wave in MnSi , 1980 .
[46] G. Shirane,et al. Magnetic excitations in the weak itinerant ferromagnet MnSi , 1977 .
[47] K. Tajima,et al. Helical spin structure in manganese silicide MnSi , 1976 .