Response of the Skyrmion Lattice in MnSi to Cubic Magnetocrystalline Anisotropies.

We report high-precision small-angle neutron scattering of the orientation of the Skyrmion lattice in a spherical sample of MnSi under systematic changes of the magnetic field direction. For all field directions the Skyrmion lattice may be accurately described as a triple-Q[over →] state, where the modulus |Q[over →]| is constant and the wave vectors enclose rigid angles of 120°. Along a great circle across ⟨100⟩, ⟨110⟩, and ⟨111⟩ the normal to the Skyrmion-lattice plane varies systematically by ±3° with respect to the field direction, while the in-plane alignment displays a reorientation by 15° for magnetic field along ⟨100⟩. Our observations are qualitatively and quantitatively in excellent agreement with an effective potential, which is determined by the symmetries of the tetrahedral point group T and includes contributions up to sixth order in spin-orbit coupling, providing a full account of the effect of cubic magnetocrystalline anisotropies on the Skyrmion lattice in MnSi.

[1]  H. Berger,et al.  Thermodynamic evidence of a second skyrmion lattice phase and tilted conical phase in Cu2OSeO3 , 2018, Physical Review B.

[2]  H. Berger,et al.  Observation of two independent skyrmion phases in a chiral magnetic material , 2018, Nature Physics.

[3]  P. Trtik,et al.  Neutron Diffractive Imaging of the Skyrmion Lattice Nucleation in {{MnSi}} , 2018 .

[4]  C. Pfleiderer,et al.  The multi-purpose three-axis spectrometer (TAS) MIRA at FRM II , 2017, 1710.00589.

[5]  T. Lograsso,et al.  Reorientations, relaxations, metastabilities, and multidomains of skyrmion lattices , 2017, 1707.04921.

[6]  Hiroshi Oike,et al.  Skyrmion lattice structural transition in MnSi , 2017, Science Advances.

[7]  Y. Tokura,et al.  Topological domain walls in helimagnets , 2017, Nature Physics.

[8]  C. Pfleiderer,et al.  Symmetry breaking, slow relaxation dynamics, and topological defects at the field-induced helix reorientation in MnSi , 2016, 1611.06835.

[9]  Yusuke Nambu,et al.  Thermal stability and irreversibility of skyrmion-lattice phases in Cu 2 OSeO 3 , 2016, 1608.06359.

[10]  H. Berger,et al.  Heuristic Description of Magnetoelectricity of Cu2OSeO3. , 2016, Nano letters.

[11]  J. White,et al.  Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. , 2016, Nature materials.

[12]  H. Berger,et al.  Resonant elastic x-ray scattering from the skyrmion lattice in Cu 2 OSeO 3 , 2016, 1606.01194.

[13]  H. Berger,et al.  Multidomain Skyrmion Lattice State in Cu2OSeO3. , 2016, Nano letters.

[14]  C. Pfleiderer,et al.  Generic Aspects of Skyrmion Lattices in Chiral Magnets , 2016, 1603.08730.

[15]  C. Pfleiderer,et al.  Uniaxial Pressure Dependence of Magnetic Order in MnSi. , 2015, Physical review letters.

[16]  Y. Tokura,et al.  Uniaxial stress control of skyrmion phase , 2015, Nature Communications.

[17]  K. Seemann,et al.  MIRA: Dual wavelength band instrument , 2015 .

[18]  M Kubota,et al.  Large anisotropic deformation of skyrmions in strained crystal. , 2015, Nature nanotechnology.

[19]  J. White,et al.  A new class of chiral materials hosting magnetic skyrmions beyond room temperature , 2015, Nature Communications.

[20]  Tim Adams Neutronenstreuung an Skyrmionengittern in chiralen Magneten , 2015 .

[21]  Y. Tokura,et al.  Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. , 2014, Nature materials.

[22]  C. Pfleiderer,et al.  Unwinding of a Skyrmion Lattice by Magnetic Monopoles , 2013, Science.

[23]  L. Fritz,et al.  Skyrmion lattice phase in three-dimensional chiral magnets from Monte Carlo simulations , 2013, 1304.6580.

[24]  C. Pfleiderer,et al.  Specific heat of the Skyrmion lattice phase and field-induced tricritical point in MnSi. , 2013, Physical review letters.

[25]  R. Georgii,et al.  Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu 2 OSeO 3 , 2012, 1206.5220.

[26]  C. Pfleiderer,et al.  Rotating skyrmion lattices by spin torques and field or temperature gradients , 2012, 1204.5051.

[27]  H. Berger,et al.  Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3. , 2012, Physical review letters.

[28]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[29]  P. Böni,et al.  Long-range crystalline nature of the Skyrmion lattice in MnSi. , 2011, Physical review letters.

[30]  H. Löhneysen,et al.  Ultra-high vacuum compatible image furnace. , 2011, The Review of scientific instruments.

[31]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[32]  E. M. Forgan,et al.  Magnetic flux lines in type-II superconductors and the 'hairy ball' theorem. , 2010, Nature communications.

[33]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[34]  P. Böni,et al.  Skyrmion lattices in metallic and semiconducting B20 transition metal compounds , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  F. Bernlochner,et al.  Helimagnon Bands as Universal Excitations of Chiral Magnets , 2009, 0907.5576.

[36]  C. Pfleiderer,et al.  Skyrmion lattice in the doped semiconductor Fe1-xCoxSi , 2009, 0903.2587.

[37]  Robert Georgii,et al.  Skyrmion Lattice Domains in Fe1−xCoxSi , 2010 .

[38]  E. M. Forgan,et al.  Morphology of the superconducting vortex lattice in ultrapure niobium. , 2009, Physical review letters.

[39]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[40]  P. Böni,et al.  Magnetic-field induced instability surrounding the A-phase of MnSi: Bulk and SANS measurements , 2006 .

[41]  E. M. Forgan,et al.  Spontaneous symmetry-breaking vortex lattice transitions in pure niobium. , 2006, Physical review letters.

[42]  A. Hubert,et al.  Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .

[43]  A. N. Bogdanov,et al.  Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets , 1989 .

[44]  P. Bak,et al.  Theory of helical magnetic structures and phase transitions in MnSi and FeGe , 1980 .

[45]  A. Hasegawa,et al.  The origin of the helical spin density wave in MnSi , 1980 .

[46]  G. Shirane,et al.  Magnetic excitations in the weak itinerant ferromagnet MnSi , 1977 .

[47]  K. Tajima,et al.  Helical spin structure in manganese silicide MnSi , 1976 .