Asymmetric Prandtl-Ishlinskii Hysteresis Model for Giant Magnetostrictive Actuator

[1]  R. D. Greenough,et al.  Actuation and transduction by giant magnetostrictive alloys , 2000 .

[2]  R. Iyer,et al.  Control of hysteretic systems through inverse compensation , 2009, IEEE Control Systems.

[3]  Kemin Zhou,et al.  Modeling and control of Giant Magnetostrictive Actuator based on Bouc-Wen model , 2011, 2011 8th Asian Control Conference (ASCC).

[4]  Alison B. Flatau,et al.  An Energy-Based Hysteresis Model for Magnetostrictive Transducers , 1997 .

[5]  John S. Baras,et al.  Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..

[6]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[7]  Ruili Dong,et al.  A modified Prandtl–Ishlinskii modeling method for hysteresis , 2009 .

[8]  Yuansheng Chen,et al.  A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  Jun Fu,et al.  Modeling and compensation of asymmetric hysteresis nonlinearity for magnetostrictive actuators with an asymmetric shifted Prandtl-Ishlinskii model , 2012, 2012 American Control Conference (ACC).

[10]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[11]  Marilyn Wun-Fogle,et al.  Preisach modeling of hysteresis in Terfenol , 1990 .

[12]  Li-Min Zhu,et al.  Modeling and Compensation of Asymmetric Hysteresis Nonlinearity for Piezoceramic Actuators With a Modified Prandtl–Ishlinskii Model , 2014, IEEE Transactions on Industrial Electronics.

[13]  Chun-Yi Su,et al.  A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators , 2009 .

[14]  Zhang Zhen,et al.  Generalized Prandtl-Ishlinskii model for rate-dependent hysteresis: Modeling and its inverse compensation for Giant Magnetostrictive Actuator , 2012, Proceedings of the 31st Chinese Control Conference.

[15]  Xingsong Wang,et al.  Hysteresis compensation in GMA actuators using Duhem model , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[16]  Feng Ding,et al.  Least squares based iterative algorithms for identifying Box-Jenkins models with finite measurement data , 2010, Digit. Signal Process..