Explicit High-Order Discontinuous Galerkin Spectral Element Methods for LES and DNS

In this work we apply the high-order discontinuous Galerkin spectral element method (DGSEM) with explicit Runge-Kutta time integration to a classical square duct channel flow problem, which is a widely used benchmark case for turbulent flows. We show that due to its good scale resolving capabilities and low dispersion and dissipation errors DGSEM is a suitable alternative to both finite difference and finite volume methods in the field of LES and DNS. We demonstrate the computational efficiency and parallel scalability of the scheme by performing both DNS and LES simulations of the channel flow at a Reynolds number of Re τ = 395. We employ an implicit closure strategy for the subgrid fluxes in the LES setting and show that our results are on par with reference results from literature.

[1]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[2]  Ralf Hartmann,et al.  Adjoint-based error estimation and adaptive mesh refinement for the RANS and k-ω turbulence model equations , 2011, J. Comput. Phys..

[3]  Gregor Gassner,et al.  A Comparison of the Dispersion and Dissipation Errors of Gauss and Gauss-Lobatto Discontinuous Galerkin Spectral Element Methods , 2011, SIAM J. Sci. Comput..

[4]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[5]  Wolfgang Dahmen,et al.  Multilevel Preconditioning of Discontinuous-Galerkin Spectral Element Methods Part I: Geometrically Conforming Meshes , 2013 .

[6]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[7]  Claus-Dieter Munz,et al.  High‐order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations , 2014 .

[8]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[9]  Norbert Kroll,et al.  ADIGMA: A European Project on the Development of Adaptive Higher Order Variational Methods for Aerospace Applications , 2010 .

[10]  Farzad Mashayek,et al.  Validation Study of a Multidomain Spectral Code for Simulation of Turbulent Flows , 2004 .

[11]  Rhj Sellin,et al.  Engineering Turbulence - Modelling and experiments 3 , 1996 .

[12]  Farzad Mashayek,et al.  Large-eddy simulation using a discontinuous Galerkin spectral element method , 2007 .

[13]  Per-Olof Persson,et al.  RANS Solutions Using High Order Discontinuous Galerkin Methods , 2007 .

[14]  S. Rebay,et al.  Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations , 2002 .

[15]  Matteo Parsani,et al.  Large eddy simulation of a muffler with the high-order spectral difference method , 2014 .

[16]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[17]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[18]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[19]  Koen Hillewaert,et al.  IDIHOM: Industrialization of high-order methods - a top-down approach : results of a collaborative research project funded by the European Union, 2010 - 2014 , 2015 .

[20]  P. Sagaut,et al.  Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number , 2000 .

[21]  Claus-Dieter Munz,et al.  Mesh Curving Techniques for High Order Discontinuous Galerkin Simulations , 2015 .

[22]  Norbert Kroll ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications : Results of a collaborative research project funded by the European Union, 2006-2009 , 2010 .

[23]  Andrew Pollard,et al.  Direct numerical simulation of compressible turbulent channel flows using the discontinuous Galerkin method , 2011 .

[24]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[25]  Claus-Dieter Munz,et al.  Preconditioning for modal discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations , 2013, J. Comput. Phys..

[26]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[27]  A. Beck,et al.  On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .

[28]  Claus-Dieter Munz,et al.  Explicit Discontinuous Galerkin methods for unsteady problems , 2012 .

[29]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[30]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[31]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[32]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[33]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .