First Result on the Neutrinoless Double-β Decay of ^{82}Se with CUPID-0.

We report the result of the search for neutrinoless double beta decay of ^{82}Se obtained with CUPID-0, the first large array of scintillating Zn^{82}Se cryogenic calorimeters implementing particle identification. We observe no signal in a 1.83 kg yr ^{82}Se exposure, and we set the most stringent lower limit on the 0νββ ^{82}Se half-life T_{1/2}^{0ν}>2.4×10^{24}  yr (90% credible interval), which corresponds to an effective Majorana neutrino mass m_{ββ}<(376-770)  meV depending on the nuclear matrix element calculations. The heat-light readout provides a powerful tool for the rejection of α particles and allows us to suppress the background in the region of interest down to (3.6_{-1.4}^{+1.9})×10^{-3}  counts/(keV kg yr), an unprecedented level for this technique.

[1]  I. Štekl,et al.  Average and recommended half-life values for two-neutrino double-beta decay: Upgrade ’05 , 2006, WORKSHOP ON CALCULATION OF DOUBLE-BETA-DECAY MATRIX ELEMENTS (MEDEX’19).

[2]  M. Misiaszek,et al.  Improved Limit on Neutrinoless Double-β Decay of ^{76}Ge from GERDA Phase II. , 2018, Physical review letters.

[3]  X. Liu,et al.  A front-end electronic system for large arrays of bolometers , 2017, 1710.06365.

[4]  L Ioannucci,et al.  First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of ^{130}Te. , 2017, Physical review letters.

[5]  Y. H. Lin,et al.  Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector. , 2017, Physical review letters.

[6]  A. Giuliani,et al.  Low background techniques in bolometers for double-beta decay search , 2017, 1711.01075.

[7]  P. Mauskopf,et al.  Advances in Bolometer Technology for Fundamental Physics , 2017 .

[8]  P. Carniti,et al.  A high precision pulse generation and stabilization system for bolometric experiments , 2017, 1710.05565.

[9]  A. Giachero,et al.  The projected background for the CUORE experiment , 2017, 1704.08970.

[10]  M. Misiaszek,et al.  Background-free search for neutrinoless double-β decay of 76Ge with GERDA , 2017, Nature.

[11]  I. Dafinei,et al.  Production of 82 Se enriched Zinc Selenide (ZnSe) crystals for the study of neutrinoless double beta decay , 2017, 1702.05877.

[12]  J. Menendez,et al.  Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review , 2016, Reports on progress in physics. Physical Society.

[13]  D. R. Artusa,et al.  Measurement of the two-neutrino double-beta decay half-life of 130\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{13 , 2016, The European Physical Journal C.

[14]  M. Decowski,et al.  Publisher's Note: Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen [Phys. Rev. Lett. 117, 082503 (2016)]. , 2016, Physical review letters.

[15]  M. Decowski,et al.  Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.

[16]  M. Maino,et al.  A low noise and high precision linear power supply with thermal foldback protection. , 2016, The Review of scientific instruments.

[17]  M. Viel,et al.  Neutrinoless Double Beta Decay: 2015 Review , 2016, 1601.07512.

[18]  A. Giachero,et al.  Analysis techniques for the evaluation of the neutrinoless double- β decay lifetime in Te 130 with the CUORE-0 detector , 2016, 1601.01334.

[19]  Andrea Passerini,et al.  Very low noise AC/DC power supply systems for large detector arrays. , 2015, The Review of scientific instruments.

[20]  J. Yao,et al.  Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory , 2014, 1410.6326.

[21]  D. R. Artusa,et al.  Exploring the neutrinoless double beta decay in the inverted neutrino hierarchy with bolometric detectors , 2014, 1404.4469.

[22]  M. Weber,et al.  Search for Majorana neutrinos with the first two years of EXO-200 data , 2014, Nature.

[23]  A. Giachero,et al.  Searching for Neutrinoless Double-Beta Decay of130Te with CUORE , 2014, 1402.6072.

[24]  E. Olivieri,et al.  An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers , 2014 .

[25]  J. Beeman,et al.  Current status and future perspectives of the LUCIFER experiment , 2013 .

[26]  O. Cremonesi,et al.  Challenges in Double Beta Decay , 2013, 1310.4692.

[27]  S. Stoica,et al.  New Calculations for Phase Space Factors Involved in Double Beta Decay , 2013, 1307.0290.

[28]  J. Beeman,et al.  Characterization of bolometric light detectors for rare event searches , 2013, 1304.6289.

[29]  P. Vogel,et al.  0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration , 2013, 1302.1509.

[30]  J. Beeman,et al.  Performances of a large mass ZnSe bolometer to search for rare events , 2013, 1303.4080.

[31]  D. L. Lincoln,et al.  First direct double-β decay Q-value measurement of 82Se in support of understanding the nature of the neutrino. , 2012, Physical review letters.

[32]  S. Petcov,et al.  Multiple CP non-conserving mechanisms of (ββ)0ν-decay and nuclei with largely different nuclear matrix elements , 2012, 1212.1331.

[33]  F. Iachello,et al.  Phase space factors for double-$\beta$ decay , 2012, 1209.5722.

[34]  Benno Margesin,et al.  Production, characterization, and selection of the heating elements for the response stabilization of the CUORE bolometers , 2012 .

[35]  J. Hakala,et al.  Double-beta decay Q values of 116Cd and 130Te , 2011 .

[36]  M. Vignati,et al.  Optimizing the energy threshold of light detectors coupled to luminescent bolometers , 2011, 1107.5679.

[37]  A. Giachero,et al.  130Te neutrinoless double-beta decay with CUORICINO , 2010, 1012.3266.

[38]  C. Arnaboldi,et al.  Characterization of ZnSe scintillating bolometers for Double Beta Decay , 2010, 1006.2721.

[39]  V. Brudanin,et al.  Investigation of double-beta decay with the NEMO-3 detector , 2010, 1002.2862.

[40]  G. Martínez-Pinedo,et al.  Energy density functional study of nuclear matrix elements for neutrinoless ββ decay. , 2010, Physical review letters.

[41]  S. Domizio,et al.  A programmable multichannel antialiasing filter for the CUORE experiment , 2010 .

[42]  M. Carrettoni,et al.  Background study and Monte Carlo simulations for large-mass bolometers , 2009 .

[43]  F. Nowacki,et al.  Disassembling the nuclear matrix elements of the neutrinoless ββ decay , 2008, 0801.3760.

[44]  D. McCammon,et al.  Physical Principles of Low Temperature Detectors: Ultimate Performance Limits and Current Detector Capabilities , 2008 .

[45]  J. Beeman,et al.  Scintillating Bolometers for Double Beta Decay Search , 2008, 0911.1061.

[46]  G. Pessina,et al.  The Design of the Input Stage for the Very Front-End of the CUORE Experiment , 2008 .

[47]  C. Giunti,et al.  Fundamentals of Neutrino Physics and Astrophysics , 2007 .

[48]  S. Pirro,et al.  Further developments in mechanical decoupling of large thermal detectors , 2006 .

[49]  G. Pessina,et al.  The cold preamplifier set-up of CUORICINO: Towards 1000 channels , 2006 .

[50]  J. Beeman,et al.  Scintillating double-beta-decay bolometers , 2005, nucl-ex/0510074.

[51]  Ezio Previtali,et al.  Methods for response stabilization in bolometers for rare decays , 1998 .

[52]  D. Camin,et al.  A scintillating bolometer for experiments on double beta decay , 1998 .

[53]  N. E. Booth,et al.  LOW-TEMPERATURE PARTICLE DETECTORS , 1996 .

[54]  Lu,et al.  Vertical muon intensity measured with MACRO at the Gran Sasso laboratory. , 1995, Physical review. D, Particles and fields.

[55]  E. Haller Advanced far-infrared detectors , 1993 .

[56]  M. Fukugita,et al.  Baryogenesis without grand unification , 1986 .

[57]  P. F. Manfredi,et al.  Processing the signals from solid-state detectors in elementary-particle physics , 1986 .

[58]  José W. F. Valle,et al.  Neutrinoless Double beta Decay in SU(2) x U(1) Theories , 1982 .

[59]  V. Radeka,et al.  Least-square-error amplitude measurement of pulse signals in presence of noise , 1967 .

[60]  W. H. Furry On Transition Probabilities in Double Beta-Disintegration , 1939 .

[61]  M. Goeppert-Mayer Double beta-disintegration , 1935 .