A Scalable Signal Distribution Network for Quantum-Dot Cellular Automata

The authors describe a signal distribution network (SDN) for quantum-dot cellular automata (QCA) devices. This network allows the distribution of a set of inputs to an arbitrary number of combinational functions, overcoming the challenges associated with wire crossings that have faced QCA systems for many years. As an additional benefit, the proposed SDN requires only four distinct clock signals, regardless of the number of inputs or outputs, and those clock signals each repeat a very simple pattern. Furthermore, this network is highly scalable, completing the distribution of inputs to an arbitrary number of distributed signals and an arbitrary number of outputs in 4 - 2 clock cycles. To illustrate its operation, the authors apply the SDN to a two-input/one-output exclusive OR operation, a three-input/two-output full adder, and a four-input/four-output multiplier.

[1]  P. D. Tougaw,et al.  Hierarchical design of quantum-dot cellular automata devices , 1999 .

[2]  D. T. Lee,et al.  On crossing minimization problem , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Yuhui Lu,et al.  Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling , 2006, Nanotechnology.

[4]  Michael T. Niemier,et al.  Eliminating wire crossings for molecular quantum-dot cellular automata implementation , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[5]  P. D. Tougaw,et al.  Dynamic behavior of quantum cellular automata , 1996 .

[6]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[7]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum dots for quantum cellular automata , 1993 .

[8]  C. Lent,et al.  Clocked molecular quantum-dot cellular automata , 2003 .

[9]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[10]  B. Smith,et al.  QCA physical design with crossing minimization , 2005, 5th IEEE Conference on Nanotechnology, 2005..

[11]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[12]  Gary H. Bernstein,et al.  Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata , 2000 .

[13]  Mahfuza Khatun,et al.  Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices , 2010 .

[14]  Mahfuza Khatun,et al.  Defect and Temperature Effects on Complex Quantum-Dot Cellular Automata Devices , 2013 .

[15]  D. Tougaw,et al.  Implementation of a crossbar network using quantum-dot cellular automata , 2005, IEEE Transactions on Nanotechnology.

[16]  P. Douglas Tougaw,et al.  Regular arrays of quantum-dot cellular automata “macrocells” , 2000 .

[17]  Sanjukta Bhanja,et al.  Novel designs for thermally robust coplanar crossing in QCA , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[18]  Sung Kyu Lim,et al.  QCA channel routing with wire crossing minimization , 2005, GLSVLSI '05.

[19]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum‐dot cells , 1993 .

[20]  D. Tougaw,et al.  Matrix Multiplication Using Quantum-Dot Cellular Automata to Implement Conventional Microelectronics , 2011, IEEE Transactions on Nanotechnology.

[21]  Peter Kogge,et al.  The effects of a new technology on the design, organization, and architectures of computing systems , 2003 .

[22]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[23]  Mahfuza Khatun,et al.  Fault tolerance properties in quantum-dot cellular automata devices , 2006 .

[24]  E.W. Johnson,et al.  Serial bit-stream analysis using quantum-dot cellular automata , 2004, IEEE Transactions on Nanotechnology.

[25]  E. W. Johnson,et al.  Programmable Logic Implemented Using Quantum-Dot Cellular Automata , 2012, IEEE Transactions on Nanotechnology.

[26]  Mahfuza Khatun,et al.  Fault tolerance calculations for clocked quantum-dot cellular automata devices , 2005 .

[27]  P. D. Tougaw,et al.  Lines of interacting quantum‐dot cells: A binary wire , 1993 .

[28]  Sung Kyu Lim,et al.  Node duplication and routing algorithms for quantum-dot cellular automata circuits , 2006 .

[29]  Sanjukta Bhanja,et al.  QCA Circuits for Robust Coplanar Crossing , 2007, J. Electron. Test..