Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling

Abstract In this paper, we examine the influence of thermomechanical coupling on the behavior of superelastic shape memory alloys subjected to cyclic loading at different loading rates. Special focus is given to the determination of the area of the stress-strain hysteresis loop once the material has achieved a stabilized state. It is found that this area does not evolve monotonically with the loading rate for either transient or asymptotic states. In order to reproduce this observation analytically, a new model is developed based on the ZM model for shape memory alloys which was modified to account for thermomechanical coupling. The model is shown to predict the non-monotonic variation in hysteresis area to good accord. Experimentally observed variations in the temperature of SMA test samples are also correctly reproduced for lower strain rates.

[1]  Wael Zaki,et al.  A 3D model of the cyclic thermomechanical behavior of shape memory alloys , 2007 .

[2]  W. Zaki,et al.  A constitutive model for shape memory alloys accounting for thermomechanical coupling , 2011 .

[3]  K. N. Melton,et al.  Fatigue of NITI thermoelastic martensites , 1979 .

[4]  Li Cheng,et al.  Fibre optic sensors for delamination identification in composite beams using a genetic algorithm , 2005 .

[5]  A. Heckmann,et al.  Structural and functional fatigue of NiTi shape memory alloys , 2004 .

[6]  S. Padula,et al.  A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions , 2011 .

[7]  H. Yin,et al.  Ambient effect on damping peak of NiTi shape memory alloy , 2010 .

[8]  Guozheng Kang,et al.  Constitutive model for uniaxial transformation ratchetting of super-elastic NiTi shape memory alloy at room temperature , 2010 .

[9]  Shuichi Miyazaki,et al.  Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys , 1986 .

[10]  Gunther Eggeler,et al.  Structural fatigue of pseudoelastic NiTi shape memory wires , 2004 .

[11]  J. Shaw A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities , 2002 .

[12]  Ziad Moumni,et al.  Fatigue analysis of shape memory alloys: energy approach , 2005 .

[13]  Stefanie Reese,et al.  Finite deformation pseudo-elasticity of shape memory alloys – Constitutive modelling and finite element implementation , 2008 .

[14]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[15]  Kikuaki Tanaka,et al.  Phenomenological analysis of thermomechanical training in an Fe-based shape memory alloy , 1998 .

[16]  T. P. G. Thamburaja A finite-deformation-based phenomenological theory for shape-memory alloys , 2010 .

[17]  G. Bourbon,et al.  Thermodynamical model of cyclic behaviour of TiNi and CuZnAl shape memory alloys under isothermal undulated tensile tests , 1996 .

[18]  H. Tobushi,et al.  Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads , 1995 .

[19]  T Prakash G. Thamburaja,et al.  Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning , 2007 .

[20]  Zhufeng Yue,et al.  Micromechanical modelling of the effect of plastic deformation on the mechanical behaviour in pseudoelastic shape memory alloys , 2008 .

[21]  Z. Q. Li,et al.  The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension , 2002 .

[22]  J. Humbeeck CYCLING EFFECTS, FATIGUE AND DEGRADATION OF SHAPE MEMORY ALLOYS , 1991 .

[23]  H. Tobushi,et al.  Low-Cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life , 2000 .

[24]  S. Calloch,et al.  A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings , 2004 .

[25]  O. Bruhns,et al.  A thermodynamic finite-strain model for pseudoelastic shape memory alloys , 2006 .

[26]  Alessandro Reali,et al.  A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings , 2010 .

[27]  L. C. Brinson,et al.  Phase diagram based description of the hysteresis behavior of shape memory alloys , 1998 .

[28]  Wael Zaki,et al.  Theoretical and numerical modeling of solid–solid phase change: Application to the description of the thermomechanical behavior of shape memory alloys , 2008 .

[29]  E. Sacco,et al.  Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching–bending loadings , 2001 .

[30]  Sang-Joo Kim,et al.  Cyclic effects in shape-memory alloys: a one-dimensional continuum model , 1997 .

[31]  A. Chrysochoos,et al.  Dissipation et blocage d'énergie lors d'un écrouissage en traction simple , 1987 .

[32]  Dimitris C. Lagoudas,et al.  A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite , 2007 .

[33]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect , 1999 .

[34]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[35]  Jinghong Fan,et al.  A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs , 2008 .

[36]  Christian Licht,et al.  Thermomechanical couplings and pseudoelasticity of shape memory alloys , 1998 .

[37]  O. Bruhns,et al.  On the viscous and strain rate dependent behavior of polycrystalline NiTi , 2008 .

[38]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[39]  T. P. G. Thamburaja,et al.  The evolution of microstructure during twinning: Constitutive equations, finite-element simulations and experimental verification , 2009 .

[40]  Hisaaki Tobushi,et al.  Rotating-bending fatigue of a TiNi shape-memory alloy wire , 1997 .

[41]  A. Eberhardt,et al.  Lifetime of superelastic Cu–Al–Be single crystal wires under bending fatigue , 2005 .

[42]  Etienne Patoor,et al.  Strain rate sensitivity in superelasticity , 2000 .

[43]  D. Lagoudas,et al.  Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys , 2010 .

[44]  D. McDowell,et al.  Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy , 2002 .

[45]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle , 1999 .