Square lattice walks avoiding a quadrant
暂无分享,去创建一个
[1] Marni Mishna,et al. Two non-holonomic lattice walks in the quarter plane , 2009, Theor. Comput. Sci..
[2] Mireille Bousquet-Melou,et al. Counting Walks in the Quarter Plane , 2017, 1708.06192.
[3] Philippe Flajolet,et al. Analytic Models and Ambiguity of Context-free Languages* , 2022 .
[4] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[5] Denis Denisov,et al. Random walks in cones , 2015 .
[6] Marni Mishna. Classifying lattice walks restricted to the quarter plane , 2009, J. Comb. Theory, Ser. A.
[7] L. Lipshitz,et al. D-finite power series , 1989 .
[8] Doron Zeilberger,et al. The quasi-holonomic ansatz and restricted lattice walks , 2008, 0806.4318.
[9] Kilian Raschel,et al. On the functions counting walks with small steps in the quarter plane , 2012 .
[10] Marni Mishna,et al. Walks with small steps in the quarter plane , 2008, 0810.4387.
[11] Ira M. Gessel,et al. A probabilistic method for lattice path enumeration , 1986 .
[12] Manuel Kauers,et al. Automatic Classification of Restricted Lattice Walks , 2008, 0811.2899.
[13] Heinrich Niederhausen. The Ballot Problem with Three Candidates , 1983, Eur. J. Comb..
[14] Doron Zeilberger,et al. Proof of Ira Gessel's lattice path conjecture , 2008, Proceedings of the National Academy of Sciences.
[15] Alin Bostan,et al. Non-D-finite excursions in the quarter plane , 2012, J. Comb. Theory A.
[16] Mireille Bousquet-M'elou,et al. Walks in the quarter plane: Kreweras’ algebraic model , 2004, math/0401067.
[17] Mireille Bousquet-M'elou,et al. An elementary solution of Gessel's walks in the quadrant , 2015, 1503.08573.
[18] Manuel Kauers,et al. The complete Generating Function for Gessel Walks is Algebraic , 2009, ArXiv.
[19] Stephen Melczer,et al. Singularity Analysis Via the Iterated Kernel Method , 2014, Comb. Probab. Comput..
[20] I. Gessel,et al. Random walk in a Weyl chamber , 1992 .
[21] Alin Bostan,et al. A human proof of Gessel's lattice path conjecture , 2016 .
[22] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[23] Kilian Raschel. Counting walks in a quadrant: a unified approach via boundary value problems , 2010 .
[24] Kilian Raschel,et al. Counting quadrant walks via Tutte's invariant method , 2017, Combinatorial Theory.
[25] Bruce E. Sagan,et al. Lattice Paths, Reeections, & Dimension-changing Bijections , 1992 .
[26] Mireille Bousquet-Mélou,et al. Polynomial equations with one catalytic variable, algebraic series and map enumeration , 2006, J. Comb. Theory, Ser. B.