Managing risk with a realized copula parameter

A dynamic copula model is introduced, in which the copula structure is inferred from the realized covariance matrix estimated from within-day high-frequency data. The estimation is carried out in a method-of-moments fashion using Hoeffding's lemma. Applying this procedure day by day gives rise to a time series of daily copula parameters which can be approximated by an autoregressive time series model. This allows one to capture time-varying dependence. In an application to portfolio risk-management, it is found that this time-varying realized copula model exhibits very good forecasting properties for the one-day ahead value at risk.

[1]  Wolfgang Härdle,et al.  Localized Realized Volatility Modeling , 2010 .

[2]  Xisong Jin Large Portfolio Risk Management with Dynamic Copulas , 2009 .

[3]  A. Ranaldo,et al.  A forecast-based comparison of restricted Wishart autoregressive models for realized covariance matrices , 2012 .

[4]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[5]  Thomas H. Mcinish,et al.  Cointegration, Error Correction, and Price Discovery on Informationally Linked Security Markets , 1995, Journal of Financial and Quantitative Analysis.

[6]  Wolfgang K. Härdle,et al.  Adaptive Pointwise Estimation in Time-Inhomogeneous Conditional Heteroscedasticity Models , 2009, 0903.4620.

[7]  Gregory H. Bauer,et al.  Forecasting multivariate realized stock market volatility , 2011 .

[8]  Andrew J. Patton On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation , 2002 .

[9]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[10]  Francesco Audrino,et al.  Modeling Tick-by-Tick Realized Correlations , 2008, Comput. Stat. Data Anal..

[11]  Niall Whelan,et al.  Sampling from Archimedean copulas , 2004 .

[12]  Stanley P. Azen,et al.  Computational Statistics and Data Analysis (CSDA) , 2006 .

[13]  Jeremy Berkowitz,et al.  How Accurate are Value-at-Risk Models at Commercial Banks , 2001 .

[14]  V. Spokoiny Multiscale local change point detection with applications to value-at-risk , 2009, 0906.1698.

[15]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[16]  Sean D. Campbell A review of backtesting and backtesting procedures , 2005 .

[17]  Karim Bannouh,et al.  Realized Mixed-Frequency Factor Models for Vast Dimensional Covariance Estimation , 2012 .

[18]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[19]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[20]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[21]  E. Ghysels,et al.  Série Scientifique Scientific Series Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies , 2022 .

[22]  C. Savu,et al.  Hierarchies of Archimedean copulas , 2010 .

[23]  Piotr Cofta,et al.  The Model of Confidence , 2007 .

[24]  W. Härdle,et al.  Inhomogeneous Dependence Modeling with Time-Varying Copulae , 2009 .

[25]  Pierre Giot,et al.  Modelling daily value-at-risk using realized volatility and arch type models , 2001 .

[26]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[27]  V. Spokoiny,et al.  Statistical inference for time-inhomogeneous volatility models , 2004, math/0406430.

[28]  Francesco Audrino,et al.  Volatility Forecasting: Downside Risk, Jumps and Leverage Effect , 2011 .

[29]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[30]  S. Häkkinen 7 – Models and Their Applications to Polar Oceanography , 1990 .

[31]  M. Rockinger,et al.  The Copula-GARCH model of conditional dependencies: An international stock market application , 2006 .

[32]  Vasyl Golosnoy,et al.  The Conditional Autoregressive Wishart Model for Multivariate Stock Market Volatility , 2010 .

[33]  Jeremy Berkowitz,et al.  Evaluating Value-at-Risk Models with Desk-Level Data , 2007, Manag. Sci..

[34]  Peter Reinhard Hansen,et al.  REALIZED BETA GARCH: A MULTIVARIATE GARCH MODEL WITH REALIZED MEASURES OF VOLATILITY , 2012 .

[35]  H. Joe Multivariate models and dependence concepts , 1998 .

[36]  Vladimir Spokoiny,et al.  ESTIMATION OF A FUNCTION WITH DISCONTINUITIES VIA LOCAL POLYNOMIAL FIT WITH AN ADAPTIVE WINDOW CHOICE , 1998 .

[37]  P. Hansen,et al.  A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data , 2005 .

[38]  W. Härdle,et al.  Nonparametric Risk Management With Generalized Hyperbolic Distributions , 2005 .

[39]  Roxana Halbleib,et al.  Modelling and Forecasting Multivariate Realized Volatility , 2008 .

[40]  Dong Hwan Oh,et al.  Simulated Method of Moments Estimation for Copula-Based Multivariate Models , 2013 .

[41]  Eric Ghysels,et al.  A Component Model for Dynamic Correlations , 2009 .

[42]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[43]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[44]  F. Audrino,et al.  HAR Modeling for Realized Volatility Forecasting , 2012 .

[45]  P. Hansen,et al.  Realized GARCH: A Joint Model of Returns and Realized Measures of Volatility , 2010 .

[46]  F. Diebold,et al.  Financial Risk Measurement for Financial Risk Management , 2011 .

[47]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[48]  N. Shephard,et al.  Realized Kernels in Practice: Trades and Quotes , 2009 .

[49]  H. Manner,et al.  Dynamic stochastic copula models: Estimation, inference and applications , 2012 .

[50]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[51]  T. Bollerslev,et al.  A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects , 2007 .

[52]  Peter F. Christoffersen,et al.  Is the Potential for International Diversification Disappearing? , 2010 .

[53]  R. Engle Dynamic Conditional Correlation , 2002 .

[54]  Neil Shephard,et al.  Realising the future: forecasting with high frequency based volatility (HEAVY) models , 2010 .

[55]  Neil Shephard,et al.  Multivariate High-Frequency-Based Volatility (HEAVY) Models , 2012 .

[56]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[57]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[58]  Dynamic structured copula models , 2013 .

[59]  Andrew J. Patton,et al.  Dynamic Copula Models and High Frequency Data , 2013 .

[60]  Drew D. Creal,et al.  Generalized autoregressive score models with applications ∗ , 2010 .

[61]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[62]  Z. Cai,et al.  Selection of Mixed Copula Model via Penalized Likelihood , 2014 .

[63]  Thomas H. McCurdy,et al.  Do High-Frequency Measures of Volatility Improve Forecasts of Return Distributions? , 2008 .

[64]  S. Laurent,et al.  Modelling Daily Value-at-Risk Using Realized Volatility and Arch Type Models , 2001 .

[65]  R. Nelsen An Introduction to Copulas , 1998 .

[66]  Forecasting Vast Dimensional Covariances Using a Dynamic Multi-Scale Realized Spectral Components Model , 2010 .

[67]  S. Mittnik,et al.  The Volatility of Realized Volatility , 2005 .

[68]  Nikolaus Hautsch,et al.  A Blocking and Regularization Approach to High Dimensional Realized Covariance Estimation , 2010 .

[69]  Valeri Voev,et al.  Forecasting Multivariate Volatility using the VARFIMA Model on Realized Covariance Cholesky Factors , 2010 .

[70]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[71]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[72]  LE,et al.  Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading , 2018 .

[73]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[74]  Helmut Herwartz,et al.  Time Inhomogeneous Multiple Volatility Modeling , 2003 .

[75]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[76]  C. Gouriéroux,et al.  The Wishart Autoregressive Process of Multivariate Stochastic Volatility , 2009 .

[77]  Paul Embrechts,et al.  Dynamic copula models for multivariate high-frequency data in finance , 2004 .

[78]  L. Bauwens,et al.  Dynamic conditional correlation models for realized covariance matrices , 2012 .

[79]  Roberto Renò,et al.  Threshold Bipower Variation and the Impact of Jumps on Volatility Forecasting , 2008 .

[80]  John M. Maheu,et al.  Modeling Realized Covariances and Returns , 2013 .

[81]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[82]  Francesco Audrino,et al.  Functional gradient descent for financial time series with an application to the measurement of market risk , 2005 .

[83]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[84]  Asger Lunde,et al.  Choosing the Best Volatility Models: The Model Confidence Set Approach , 2003 .