Error estimates of some splitting schemes for charged-particle dynamics under strong magnetic field

In this work, we consider the error estimates of some splitting schemes for the charged-particle dynamics under a strong magnetic field. We first propose a novel energy-preserving splitting scheme with computational cost per step independent from the strength of the magnetic field. Then under the maximal ordering scaling case, we establish for the scheme and in fact for a class of Lie-Trotter type splitting schemes, a uniform (in the strength of the magnetic field) and optimal error bound in the position and in the velocity parallel to the magnetic field. For the general strong magnetic field case, the modulated Fourier expansions of the exact and the numerical solutions are constructed to obtain a convergence result. Numerical experiments are presented to illustrate the error and energy behaviour of the splitting schemes.

[1]  Jianyuan Xiao,et al.  Explicit symplectic algorithms based on generating functions for charged particle dynamics. , 2016, Physical review. E.

[2]  Ernst Hairer,et al.  Energy behaviour of the Boris method for charged-particle dynamics , 2018, BIT Numerical Mathematics.

[3]  G. Benettin,et al.  Adiabatic invariants and trapping of a point charge in a strong nonuniform magnetic field , 1994 .

[4]  E. Hairer,et al.  DYNAMICS, NUMERICAL ANALYSIS, AND SOME GEOMETRY , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[5]  E. Hairer Energy-Preserving Variant of Collocation Methods 12 , 2010 .

[6]  E. Hairer Energy-preserving variant of collocation methods 1 , 2010 .

[7]  W. W. Lee,et al.  Gyrokinetic approach in particle simulation , 1981 .

[8]  Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. , 2008 .

[9]  FRANCIS FILBET,et al.  Asymptotically Stable Particle-In-Cell Methods for the Vlasov-Poisson System with a Strong External Magnetic Field , 2015, SIAM J. Numer. Anal..

[10]  Francis Filbet,et al.  Convergence analysis of asymptotic preserving schemes for strongly magnetized plasmas , 2020, Numerische Mathematik.

[11]  Ting Li,et al.  Efficient energy-preserving methods for charged-particle dynamics , 2018, Appl. Math. Comput..

[12]  Nicolas Crouseilles,et al.  Multiscale Particle-in-Cell methods and comparisons for the long-time two-dimensional Vlasov-Poisson equation with strong magnetic field , 2018, Comput. Phys. Commun..

[13]  Bin Wang,et al.  Exponential energy-preserving methods for charged-particle dynamics in a strong and constant magnetic field , 2018, J. Comput. Appl. Math..

[14]  Ernst Hairer,et al.  Long-term analysis of a variational integrator for charged-particle dynamics in a strong magnetic field , 2020, Numerische Mathematik.

[15]  Ernst Hairer,et al.  Long-term analysis of the Störmer–Verlet method for Hamiltonian systems with a solution-dependent high frequency , 2016, Numerische Mathematik.

[16]  Jian Liu,et al.  Why is Boris algorithm so good , 2013 .

[17]  Juan I. Montijano,et al.  High-order energy-conserving Line Integral Methods for charged particle dynamics , 2019, J. Comput. Phys..

[18]  Francis Filbet,et al.  Asymptotically Preserving Particle-in-Cell Methods for Inhomogeneous Strongly Magnetized Plasmas , 2017, SIAM J. Numer. Anal..

[19]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Francesco Salvarani,et al.  Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method , 2007, 0710.3983.

[21]  R. E. Marshak,et al.  The Adiabatic Motion of Charged Particles , 1964 .

[22]  S. Possanner Gyrokinetics from variational averaging: Existence and error bounds , 2017, Journal of Mathematical Physics.

[23]  Ernst Hairer,et al.  Symmetric multistep methods for charged-particle dynamics , 2017 .

[24]  Mechthild Thalhammer,et al.  Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations , 2016, Math. Comput..

[25]  Francis Filbet,et al.  On the Vlasov-Maxwell System with a Strong Magnetic Field , 2018, SIAM J. Appl. Math..

[26]  Nicolas Crouseilles,et al.  Uniformly accurate methods for three dimensional Vlasov equations under strong magnetic field with varying direction , 2019, SIAM J. Sci. Comput..

[27]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[28]  Nicolas Crouseilles,et al.  Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field , 2019, Math. Comput..

[29]  Alexander Ostermann,et al.  Splitting methods for time integration of trajectories in combined electric and magnetic fields. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Stephen D. Webb,et al.  Symplectic integration of magnetic systems , 2013, J. Comput. Phys..

[32]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[33]  Bin Wang,et al.  A filtered Boris algorithm for charged-particle dynamics in a strong magnetic field , 2019, Numerische Mathematik.

[34]  K. Kormann,et al.  GEMPIC: geometric electromagnetic particle-in-cell methods , 2016, Journal of Plasma Physics.

[35]  Hong Qin,et al.  Volume-preserving algorithms for charged particle dynamics , 2015, J. Comput. Phys..

[36]  John R. Cary,et al.  Hamiltonian theory of guiding-center motion , 2009 .

[37]  Molei Tao,et al.  Explicit high-order symplectic integrators for charged particles in general electromagnetic fields , 2016, J. Comput. Phys..

[38]  S. Hirstoaga,et al.  Long Time Behaviour of an Exponential Integrator for a Vlasov-Poisson System with Strong Magnetic Field , 2015 .

[39]  Nicolas Crouseilles,et al.  Numerical methods for the two-dimensional Vlasov-Poisson equation in the finite Larmor radius approximation regime , 2018, J. Comput. Phys..

[40]  Ting Li,et al.  Arbitrary-order energy-preserving methods for charged-particle dynamics , 2020, Appl. Math. Lett..

[41]  Ernst Hairer,et al.  Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations , 2000, SIAM J. Numer. Anal..

[42]  Hong Qin,et al.  Explicit K-symplectic algorithms for charged particle dynamics , 2017 .

[43]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .