$${\mathcal {N}}=1$$ Geometric Supergravity and Chiral Triples on Riemann Surfaces
暂无分享,去创建一个
[1] C. Lazaroiu,et al. Complex Lipschitz structures and bundles of complex Clifford modules , 2017, Differential Geometry and its Applications.
[2] C. Lazaroiu,et al. Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds , 2017, Journal of Geometry and Physics.
[3] D. Roest,et al. A geometric formulation of supersymmetry , 2016, 1609.07362.
[4] C. Lazaroiu,et al. Generalized Einstein-Scalar-Maxwell theories and locally geometric U-folds , 2016, Reviews in Mathematical Physics.
[5] T. Ortín. Gravity and Strings by Tomás Ortín , 2015 .
[6] T. Ortín. Gravity and strings , 2015 .
[7] Mansi Dhuria. Topics in Supergravity Phenomenology , 2014, 1409.1318.
[8] Y. Tanii. Introduction to Supergravity , 2014 .
[9] E. Babalic,et al. The geometric algebra of Fierz identities in arbitrary dimensions and signatures , 2013, 1304.4403.
[10] T. Ortín,et al. Ultracold spherical horizons in gauged N=1, d=4 supergravity , 2010, 1007.3917.
[11] J. Gutowski,et al. Topology of supersymmetric $ \mathcal{N} = 1 $, D = 4 supergravity horizons , 2010, 1006.4369.
[12] T. Ortín,et al. Domain walls and instantons in N = 1, d = 4 supergravity , 2009, 0912.3672.
[13] B. Zumino,et al. Duality Rotations in Nonlinear Electrodynamics and in Extended Supergravity , 2008, 0807.4039.
[14] T. Ortín. The supersymmetric solutions and extensions of ungauged matter-coupled N = 1, d = 4 supergravity , 2008, 0802.1799.
[15] Ulf Gran,et al. Geometry of all supersymmetric four-dimensional N=1 supergravity backgrounds , 2008, 0802.1779.
[16] M. Verbitsky. Plurisubharmonic functions in calibrated geometry and q-convexity , 2007, 0712.4036.
[17] J. Figueroa-O’Farrill,et al. Supersymmetry and spin structures , 2005, hep-th/0506229.
[18] A. Ikemakhen. Parallel spinors on pseudo-Riemannian s p i n c manifolds , 2004, math/0503584.
[19] D. Alekseevsky,et al. Polyvector Super-Poincaré Algebras , 2003, hep-th/0311107.
[20] A. Bernal,et al. On Smooth Cauchy Hypersurfaces and Geroch’s Splitting Theorem , 2003, gr-qc/0306108.
[21] P. Gauduchon,et al. Generalized cylinders in semi-Riemannian and spin geometry , 2003, math/0303095.
[22] A. Dabholkar,et al. Duality twists, orbifolds, and fluxes , 2002, hep-th/0210209.
[23] J. McGreevy,et al. Geometric constructions of nongeometric string theories , 2002, hep-th/0208174.
[24] T. Friedrich. Dirac Operators in Riemannian Geometry , 2000 .
[25] D. Alekseevsky,et al. Special complex manifolds , 1999, math/9910091.
[26] Otto Forster,et al. Lectures on Riemann Surfaces , 1999 .
[27] T. Friedrich,et al. Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors , 1999, math/9906168.
[28] T. Friedrich,et al. The Einstein-Dirac Equation on Riemannian Spin Manifolds , 1999, math/9905095.
[29] T. Friedrich,et al. Spin Spaces, Lipschitz Groups, and Spinor Bundles , 1999, math/9901137.
[30] Ramón Reyes Carrión. A generalization of the notion of instanton , 1998 .
[31] D. Freed. Special Kähler Manifolds , 1997, hep-th/9712042.
[32] Andrei Moroianu. Parallel and Killing Spinors on Spinc Manifolds , 1997 .
[33] Andrea Ratto,et al. Harmonic maps with potential , 1997 .
[34] S. Ferrara,et al. U duality and central charges in various dimensions revisited , 1996, hep-th/9612105.
[35] S. Ferrara,et al. N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance gaugings and the momentum map , 1996, hep-th/9605032.
[36] D. Alekseevsky,et al. Classification of N-(Super)-Extended Poincaré Algebras and Bilinear Invariants of the Spinor Representation of Spin (p,q) , 1995, math/9511215.
[37] Christian Bär. Real Killing spinors and holonomy , 1993 .
[38] M. Troyanov,et al. Prescribing curvature on open surfaces , 1992 .
[39] J. Eells,et al. Another Report on Harmonic Maps , 1988 .
[40] J. Kazdan,et al. Prescribing the Curvature of a Riemannian Manifold , 1985 .
[41] E. Witten,et al. Quantization of Newton's constant in certain supergravity theories☆ , 1982 .
[42] Joel Scherk,et al. Spontaneous Symmetry Breaking and Higgs Effect in Supergravity Without Cosmological Constant , 1979 .
[43] E. Cremmer,et al. The supersymmetric non-linear σ-model in four dimensions and its coupling to supergravity , 1978 .
[44] L. Lemaire. On the existence of harmonic maps , 1977 .
[45] D. Freedman,et al. Supergravity: N = 1 supergravity actions and applications , 2012 .
[46] J. Gutowski,et al. Topology of supersymmetric N=1, D=4 supergravity horizons , 2010 .
[47] R. Godbole,et al. Theory and phenomenology of sparticles : an account of four-dimensional N=1 supersymmetry in high energy physics , 2004 .
[48] Dusa McDuff,et al. J-Holomorphic Curves and Symplectic Topology , 2004 .
[49] A. Strominger. Special geometry , 1990 .
[50] Helga Baum. Complete Riemannian manifolds with imaginary Killing spinors , 1989 .
[51] H. Baum,et al. Odd-dimensional Riemannian manifolds with imaginary Killing spinors , 1989 .
[52] J. Eells,et al. Selected topics on harmonic maps , 1983 .
[53] Luc Lemaire,et al. Applications harmoniques de surfaces riemanniennes , 1978 .
[54] F. W. Warner,et al. Curvature Functions for Compact 2-Manifolds , 1974 .