$${\mathcal {N}}=1$$ Geometric Supergravity and Chiral Triples on Riemann Surfaces

[1]  C. Lazaroiu,et al.  Complex Lipschitz structures and bundles of complex Clifford modules , 2017, Differential Geometry and its Applications.

[2]  C. Lazaroiu,et al.  Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds , 2017, Journal of Geometry and Physics.

[3]  D. Roest,et al.  A geometric formulation of supersymmetry , 2016, 1609.07362.

[4]  C. Lazaroiu,et al.  Generalized Einstein-Scalar-Maxwell theories and locally geometric U-folds , 2016, Reviews in Mathematical Physics.

[5]  T. Ortín Gravity and Strings by Tomás Ortín , 2015 .

[6]  T. Ortín Gravity and strings , 2015 .

[7]  Mansi Dhuria Topics in Supergravity Phenomenology , 2014, 1409.1318.

[8]  Y. Tanii Introduction to Supergravity , 2014 .

[9]  E. Babalic,et al.  The geometric algebra of Fierz identities in arbitrary dimensions and signatures , 2013, 1304.4403.

[10]  T. Ortín,et al.  Ultracold spherical horizons in gauged N=1, d=4 supergravity , 2010, 1007.3917.

[11]  J. Gutowski,et al.  Topology of supersymmetric $ \mathcal{N} = 1 $, D = 4 supergravity horizons , 2010, 1006.4369.

[12]  T. Ortín,et al.  Domain walls and instantons in N = 1, d = 4 supergravity , 2009, 0912.3672.

[13]  B. Zumino,et al.  Duality Rotations in Nonlinear Electrodynamics and in Extended Supergravity , 2008, 0807.4039.

[14]  T. Ortín The supersymmetric solutions and extensions of ungauged matter-coupled N = 1, d = 4 supergravity , 2008, 0802.1799.

[15]  Ulf Gran,et al.  Geometry of all supersymmetric four-dimensional N=1 supergravity backgrounds , 2008, 0802.1779.

[16]  M. Verbitsky Plurisubharmonic functions in calibrated geometry and q-convexity , 2007, 0712.4036.

[17]  J. Figueroa-O’Farrill,et al.  Supersymmetry and spin structures , 2005, hep-th/0506229.

[18]  A. Ikemakhen Parallel spinors on pseudo-Riemannian s p i n c manifolds , 2004, math/0503584.

[19]  D. Alekseevsky,et al.  Polyvector Super-Poincaré Algebras , 2003, hep-th/0311107.

[20]  A. Bernal,et al.  On Smooth Cauchy Hypersurfaces and Geroch’s Splitting Theorem , 2003, gr-qc/0306108.

[21]  P. Gauduchon,et al.  Generalized cylinders in semi-Riemannian and spin geometry , 2003, math/0303095.

[22]  A. Dabholkar,et al.  Duality twists, orbifolds, and fluxes , 2002, hep-th/0210209.

[23]  J. McGreevy,et al.  Geometric constructions of nongeometric string theories , 2002, hep-th/0208174.

[24]  T. Friedrich Dirac Operators in Riemannian Geometry , 2000 .

[25]  D. Alekseevsky,et al.  Special complex manifolds , 1999, math/9910091.

[26]  Otto Forster,et al.  Lectures on Riemann Surfaces , 1999 .

[27]  T. Friedrich,et al.  Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors , 1999, math/9906168.

[28]  T. Friedrich,et al.  The Einstein-Dirac Equation on Riemannian Spin Manifolds , 1999, math/9905095.

[29]  T. Friedrich,et al.  Spin Spaces, Lipschitz Groups, and Spinor Bundles , 1999, math/9901137.

[30]  Ramón Reyes Carrión A generalization of the notion of instanton , 1998 .

[31]  D. Freed Special Kähler Manifolds , 1997, hep-th/9712042.

[32]  Andrei Moroianu Parallel and Killing Spinors on Spinc Manifolds , 1997 .

[33]  Andrea Ratto,et al.  Harmonic maps with potential , 1997 .

[34]  S. Ferrara,et al.  U duality and central charges in various dimensions revisited , 1996, hep-th/9612105.

[35]  S. Ferrara,et al.  N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance gaugings and the momentum map , 1996, hep-th/9605032.

[36]  D. Alekseevsky,et al.  Classification of N-(Super)-Extended Poincaré Algebras and Bilinear Invariants of the Spinor Representation of Spin (p,q) , 1995, math/9511215.

[37]  Christian Bär Real Killing spinors and holonomy , 1993 .

[38]  M. Troyanov,et al.  Prescribing curvature on open surfaces , 1992 .

[39]  J. Eells,et al.  Another Report on Harmonic Maps , 1988 .

[40]  J. Kazdan,et al.  Prescribing the Curvature of a Riemannian Manifold , 1985 .

[41]  E. Witten,et al.  Quantization of Newton's constant in certain supergravity theories☆ , 1982 .

[42]  Joel Scherk,et al.  Spontaneous Symmetry Breaking and Higgs Effect in Supergravity Without Cosmological Constant , 1979 .

[43]  E. Cremmer,et al.  The supersymmetric non-linear σ-model in four dimensions and its coupling to supergravity , 1978 .

[44]  L. Lemaire On the existence of harmonic maps , 1977 .

[45]  D. Freedman,et al.  Supergravity: N = 1 supergravity actions and applications , 2012 .

[46]  J. Gutowski,et al.  Topology of supersymmetric N=1, D=4 supergravity horizons , 2010 .

[47]  R. Godbole,et al.  Theory and phenomenology of sparticles : an account of four-dimensional N=1 supersymmetry in high energy physics , 2004 .

[48]  Dusa McDuff,et al.  J-Holomorphic Curves and Symplectic Topology , 2004 .

[49]  A. Strominger Special geometry , 1990 .

[50]  Helga Baum Complete Riemannian manifolds with imaginary Killing spinors , 1989 .

[51]  H. Baum,et al.  Odd-dimensional Riemannian manifolds with imaginary Killing spinors , 1989 .

[52]  J. Eells,et al.  Selected topics on harmonic maps , 1983 .

[53]  Luc Lemaire,et al.  Applications harmoniques de surfaces riemanniennes , 1978 .

[54]  F. W. Warner,et al.  Curvature Functions for Compact 2-Manifolds , 1974 .