Nonlinear disparity mapping for stereoscopic 3D

This paper addresses the problem of remapping the disparity range of stereoscopic images and video. Such operations are highly important for a variety of issues arising from the production, live broadcast, and consumption of 3D content. Our work is motivated by the observation that the displayed depth and the resulting 3D viewing experience are dictated by a complex combination of perceptual, technological, and artistic constraints. We first discuss the most important perceptual aspects of stereo vision and their implications for stereoscopic content creation. We then formalize these insights into a set of basic disparity mapping operators. These operators enable us to control and retarget the depth of a stereoscopic scene in a nonlinear and locally adaptive fashion. To implement our operators, we propose a new strategy based on stereoscopic warping of the input video streams. From a sparse set of stereo correspondences, our algorithm computes disparity and image-based saliency estimates, and uses them to compute a deformation of the input views so as to meet the target disparities. Our approach represents a practical solution for actual stereo production and display that does not require camera calibration, accurate dense depth maps, occlusion handling, or inpainting. We demonstrate the performance and versatility of our method using examples from live action post-production, 3D display size adaptation, and live broadcast. An additional user study and ground truth comparison further provide evidence for the quality and practical relevance of the presented work.

[1]  Philip H. S. Torr,et al.  VideoTrace: rapid interactive scene modelling from video , 2007, SIGGRAPH 2007.

[2]  Oliver Schreer,et al.  NONLINEAR DEPTH SCALING FOR IMMERSIVE VIDEO APPLICATIONS , 2003 .

[3]  Liming Zhang,et al.  Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  James E. Cutting,et al.  Chapter 3 – Perceiving Layout and Knowing Distances: The Integration, Relative Potency, and Contextual Use of Different Information about Depth* , 1995 .

[5]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[6]  Steven M. Seitz,et al.  View morphing , 1996, SIGGRAPH.

[7]  M. Ben-Ezra,et al.  Automatic disparity control in stereo panoramas (OmniStereo) , 2000, Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No.PR00704).

[8]  André Vincent,et al.  Stereo image quality: effects of mixed spatio-temporal resolution , 2000, IEEE Trans. Circuits Syst. Video Technol..

[9]  Erik Reinhard,et al.  09 – Image-based Lighting , 2006 .

[10]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[11]  Torsten Sattler,et al.  SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[12]  Markus Gross,et al.  A system for retargeting of streaming video , 2009, SIGGRAPH 2009.

[13]  Adam Finkelstein,et al.  Digital bas-relief from 3D scenes , 2007, ACM Trans. Graph..

[14]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[15]  B. Julesz,et al.  A disparity gradient limit for binocular fusion. , 1980, Science.

[16]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[17]  Daniel Cohen-Or,et al.  Semi-automatic stereo extraction from video footage , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[18]  Mel W. Siegel,et al.  Just enough reality: comfortable 3-D viewing via microstereopsis , 2000, IEEE Trans. Circuits Syst. Video Technol..

[19]  Alexander A. Sawchuk,et al.  Disparity manipulation for stereo images and video , 2008, Electronic Imaging.

[20]  Erik Reinhard,et al.  High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (The Morgan Kaufmann Series in Computer Graphics) , 2005 .

[21]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.

[22]  Michael Gleicher,et al.  Content-preserving warps for 3D video stabilization , 2009, ACM Trans. Graph..

[23]  Mtm Marc Lambooij,et al.  Visual Discomfort and Visual Fatigue of Stereoscopic Displays: A Review , 2009 .

[24]  Olga Sorkine-Hornung,et al.  Visual media retargeting , 2009, SIGGRAPH ASIA Courses.

[25]  P. Belhumeur,et al.  Moving gradients: a path-based method for plausible image interpolation , 2009, SIGGRAPH 2009.

[26]  H. A. David,et al.  The method of paired comparisons , 1966 .

[27]  Geng Sun,et al.  Evaluating methods for controlling depth perception in stereoscopic cinematography , 2009, Electronic Imaging.

[28]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, SIGGRAPH 2004.

[29]  Carsten Rother,et al.  A stereo approach that handles the matting problem via image warping , 2009, CVPR.

[30]  Manbae Kim,et al.  Depth Scaling of Multiview Images for Automultiscopic 3D Monitors , 2008, 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video.

[31]  Bernard Mendiburu,et al.  3D Movie Making: Stereoscopic Digital Cinema from Script to Screen , 2009 .

[32]  Ian P. Howard,et al.  Seeing in Depth , 2008 .

[33]  Andrew Blake,et al.  Efficient Dense Stereo with Occlusions for New View-Synthesis by Four-State Dynamic Programming , 2006, International Journal of Computer Vision.

[34]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[35]  A. Agarwala,et al.  Optimizing content-preserving projections for wide-angle images , 2009, SIGGRAPH 2009.

[36]  Richard Szeliski,et al.  High-quality video view interpolation using a layered representation , 2004, SIGGRAPH 2004.

[37]  Wojciech Matusik,et al.  3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes , 2004, ACM Trans. Graph..

[38]  Erik Reinhard,et al.  High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting , 2010 .

[39]  H. Seidel,et al.  Motion-aware temporal coherence for video resizing , 2009, SIGGRAPH 2009.

[40]  Aljoscha Smolic,et al.  Intermediate view interpolation based on multiview video plus depth for advanced 3D video systems , 2008, 2008 15th IEEE International Conference on Image Processing.

[41]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[42]  M. Landy,et al.  Why Is Spatial Stereoresolution So Low? , 2004, The Journal of Neuroscience.

[43]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[44]  Frédo Durand,et al.  A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach , 2006, ECCV.