Cell Concepts of Metal–Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications

[1]  Prasant Kumar Nayak,et al.  From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. , 2018, Angewandte Chemie.

[2]  Rezan Demir‐Cakan,et al.  Investigation of the Effect of Using Al2O3–Nafion Barrier on Room-Temperature Na–S Batteries , 2017 .

[3]  Yong‐Sheng Hu,et al.  A class of liquid anode for rechargeable batteries with ultralong cycle life , 2017, Nature Communications.

[4]  Yufeng Zhao,et al.  Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives , 2017 .

[5]  D. Muller,et al.  Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts , 2017, Microscopy and Microanalysis.

[6]  Ulrich S. Schubert,et al.  Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials , 2016, Angewandte Chemie.

[7]  Feng Wu,et al.  The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons , 2016 .

[8]  Yi Cui,et al.  Designing high-energy lithium-sulfur batteries. , 2016, Chemical Society reviews.

[9]  Asma Sharafi,et al.  Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy. , 2016, Nano letters.

[10]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[11]  Linda F. Nazar,et al.  Advances in understanding mechanisms underpinning lithium–air batteries , 2016, Nature Energy.

[12]  M. Oschatz,et al.  Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions. , 2016, Chemistry.

[13]  T. Leichtweiss,et al.  Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. , 2016, Nature chemistry.

[14]  Yong-Sheng Hu,et al.  Batteries: Getting solid , 2016, Nature Energy.

[15]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[16]  Yizhou Zhu,et al.  First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .

[17]  A. Manthiram,et al.  Performance Enhancement and Mechanistic Studies of Room-Temperature Sodium–Sulfur Batteries with a Carbon-Coated Functional Nafion Separator and a Na2S/Activated Carbon Nanofiber Cathode , 2016 .

[18]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[19]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[20]  Jun Liu,et al.  A Low Cost, High Energy Density, and Long Cycle Life Potassium–Sulfur Battery for Grid‐Scale Energy Storage , 2015, Advanced materials.

[21]  G. Soloveichik Flow Batteries: Current Status and Trends. , 2015, Chemical reviews.

[22]  D. Aurbach,et al.  Review on Li‐Sulfur Battery Systems: an Integral Perspective , 2015 .

[23]  A. Manthiram,et al.  Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode , 2015 .

[24]  Tejs Vegge,et al.  Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S , 2015 .

[25]  Alex Bates,et al.  A review of lithium and non-lithium based solid state batteries , 2015 .

[26]  A. Schwöbel,et al.  Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission , 2015 .

[27]  Philipp Adelhelm,et al.  From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries , 2015, Beilstein journal of nanotechnology.

[28]  B. Nykvist,et al.  Rapidly falling costs of battery packs for electric vehicles , 2015 .

[29]  M. Fichtner,et al.  Performance Improvement of Magnesium Sulfur Batteries with Modified Non‐Nucleophilic Electrolytes , 2015 .

[30]  J. Hassoun,et al.  A lithium-ion sulfur battery using a polymer, polysulfide-added membrane , 2015, Scientific Reports.

[31]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[32]  J. Janek,et al.  Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries , 2014 .

[33]  A. Manthiram,et al.  Room-Temperature Sodium–Sulfur Batteries with Liquid-Phase Sodium Polysulfide Catholytes and Binder-Free Multiwall Carbon Nanotube Fabric Electrodes , 2014 .

[34]  Yarong Wang,et al.  An aqueous dissolved polysulfide cathode for lithium–sulfur batteries , 2014 .

[35]  Kai Zhang,et al.  Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. , 2014, Inorganic chemistry.

[36]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[37]  Weikun Wang,et al.  Improved cycle stability and high security of Li-B alloy anode for lithium–sulfur battery , 2014 .

[38]  A. Manthiram,et al.  Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries. , 2014, The journal of physical chemistry letters.

[39]  H. Althues,et al.  Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators , 2014 .

[40]  Jeannette M Garcia,et al.  Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries. , 2014, The journal of physical chemistry letters.

[41]  H. Althues,et al.  Carbon‐Based Anodes for Lithium Sulfur Full Cells with High Cycle Stability , 2014 .

[42]  Yang‐Kook Sun,et al.  A lithium-ion sulfur battery based on a carbon-coated lithium-sulfide cathode and an electrodeposited silicon-based anode. , 2014, ACS applied materials & interfaces.

[43]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[44]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[45]  Sebastian Wenzel,et al.  Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte , 2013 .

[46]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[47]  Bruno Scrosati,et al.  Recent progress and remaining challenges in sulfur-based lithium secondary batteries--a review. , 2013, Chemical communications.

[48]  T. Leichtweiss,et al.  Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes , 2013 .

[49]  Taeeun Yim,et al.  Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries , 2013 .

[50]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[51]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[52]  L. Nazar,et al.  New approaches for high energy density lithium-sulfur battery cathodes. , 2013, Accounts of chemical research.

[53]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[54]  Li-Jun Wan,et al.  High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte , 2013 .

[55]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[56]  Jens Tübke,et al.  Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes , 2013 .

[57]  Takeshi Kobayashi,et al.  All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte , 2013 .

[58]  Bruno Scrosati,et al.  A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon-sulfur battery , 2012 .

[59]  Doron Aurbach,et al.  Sulfur‐Impregnated Activated Carbon Fiber Cloth as a Binder‐Free Cathode for Rechargeable Li‐S Batteries , 2011, Advanced materials.

[60]  Jie Gao,et al.  Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies , 2011 .

[61]  Masahiro Tatsumisago,et al.  Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte , 2011 .

[62]  Venkat Srinivasan,et al.  Resource constraints on the battery energy storage potential for grid and transportation applications , 2011 .

[63]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[64]  J. Dewulf,et al.  Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings , 2010 .

[65]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[66]  Jou-Hyeon Ahn,et al.  Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte , 2007 .

[67]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[68]  Jing-ying Xie,et al.  All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes , 2004 .

[69]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[70]  R. Dillon,et al.  The Low Current Domain of the Aluminum/Sulfur Battery , 1997 .

[71]  Arthur D. Pelton,et al.  The Na-S (Sodium-Sulfur) System , 1997 .

[72]  A. Pelton,et al.  The K-S (Potassium-Sulfur) system , 1997 .

[73]  H. Okamoto The Li-S (lithium-sulfur) system , 1995 .

[74]  K. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[75]  K. M. Abraham,et al.  A low temperature NaS battery incorporating A soluble S cathode , 1978 .

[76]  Claude Lasne,et al.  Some Aspects of Sodium‐Sulfur Cell Operation , 1973 .

[77]  Rajeev S. Assary,et al.  Solvent Effects on Polysulfide Redox Kinetics and Ionic Conductivity in Lithium-Sulfur Batteries , 2016 .

[78]  Jou-Hyeon Ahn,et al.  A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode , 2016 .

[79]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[80]  Zhan Lin,et al.  Lithium-Sulfur Batteries: from Liquid to Solid Cells? , 2015 .

[81]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[82]  Hong‐Jie Peng,et al.  Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries , 2014 .

[83]  Shengbo Zhang Binder Based on Polyelectrolyte for High Capacity Density Lithium/Sulfur Battery , 2012 .

[84]  Sehee Lee,et al.  Electrochemical Investigation of All-Solid-State Lithium Batteries with a High Capacity Sulfur-Based Electrode , 2012 .

[85]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[86]  W. O'grady,et al.  Studies on the Electrodeposition of Magnesium in Ionic Liquids , 2008 .

[87]  R. Steudel Topic in Current Chemistry , 2003 .

[88]  Emanuel Peled,et al.  Electrochemistry of a nonaqueous lithium/sulfur cell , 1983 .

[89]  M. Whittingham,et al.  Measurement of Sodium Ion Transport in Beta Alumina Using Reversible Solid Electrodes , 1971 .

[90]  A. S.,et al.  Lehrbuch der Anorganischen Chemie , 1900, Nature.