Taylor’s Law for Some Infinitely Divisible Probability Distributions from Population Models

[1]  Mark Brown,et al.  Taylor’s law of fluctuation scaling for semivariances and higher moments of heavy-tailed data , 2021, Proceedings of the National Academy of Sciences.

[2]  G. Samorodnitsky,et al.  Heavy-tailed distributions, correlations, kurtosis and Taylor’s Law of fluctuation scaling , 2020, Proceedings of the Royal Society A.

[3]  S. Bar-Lev Independent, Tough Identical Results: The Class of Tweedie on Power Variance Functions and the Class of Bar-Lev and Enis on Reproducible Natural Exponential Families , 2019, International Journal of Statistics and Probability.

[4]  J. Cohen Every variance function, including Taylor’s power law of fluctuation scaling, can be produced by any location-scale family of distributions with positive mean and variance , 2019, Theoretical Ecology.

[5]  Mark Brown,et al.  Taylor's law, via ratios, for some distributions with infinite mean , 2017, Journal of Applied Probability.

[6]  R. Poulin,et al.  Linking parasite populations in hosts to parasite populations in space through Taylor's law and the negative binomial distribution , 2016, Proceedings of the National Academy of Sciences.

[7]  Célestin C. Kokonendji,et al.  Discrete dispersion models and their Tweedie asymptotics , 2014, 1409.7482.

[8]  J. Cohen Stochastic population dynamics in a Markovian environment implies Taylor's power law of fluctuation scaling. , 2014, Theoretical population biology.

[9]  O. Barndorff-Nielsen,et al.  THE MULTIVARIATE supOU STOCHASTIC VOLATILITY MODEL , 2009 .

[10]  J. Kertész,et al.  Fluctuation scaling in complex systems: Taylor's law and beyond , 2007, 0708.2053.

[11]  F. Steutel,et al.  Infinite Divisibility of Probability Distributions on the Real Line , 2003 .

[12]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[13]  W. Schoutens Lévy Processes in Finance , 2003 .

[14]  Z. Jurek REMARKS ON THE SELFDECOMPOSABILITY AND NEW EXAMPLES , 2001 .

[15]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[16]  Ananda Sen,et al.  The Theory of Dispersion Models , 1997, Technometrics.

[17]  W. Kendal A probabilistic model for the variance to mean power law in ecology , 1995 .

[18]  G. Letac,et al.  Natural exponential families and self-decomposability , 1992 .

[19]  Shaul K. Bar-Lev,et al.  Characterizations of natural exponential families with power variance functions by zero regression properties , 1987 .

[20]  Shaul K. Bar-Lev,et al.  Reproducibility and natural exponential families with power variance functions , 1986 .

[21]  W. Vervaat,et al.  Self-decomposable discrete distributions and branching processes , 1982 .

[22]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[23]  L. R. Taylor,et al.  Aggregation, Variance and the Mean , 1961, Nature.

[24]  H. A. Brischle,et al.  Measuring the Local Distribution of Ribes , 1944 .

[25]  C. I. Bliss Statistical Problems in Estimating Populations of Japanese Beetle Larvae , 1941 .

[26]  G. Beall,et al.  THE TRANSFORMATION OF DATA FROM ENTOMOLOGICAL FIELD EXPERIMENTS , 1940, The Canadian Entomologist.

[27]  M. Bartlett Some Notes on Insecticide Tests in the Laboratory and in the Field , 1936 .

[28]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[29]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[30]  Jean Bertoin,et al.  Subordinators, Lévy processes with no negative jumps, and branching processes , 2000 .

[31]  B. Jørgensen Exponential Dispersion Models , 1987 .

[32]  M. Baran The cabbage aphid (Brevicoryne brassicae L.). , 1970 .

[33]  G. Beall METHODS OF ESTIMATING THE POPULATION OF INSECTS IN A FIELD , 1939 .