Plasmonic polymer nanocomposites

[1]  A. Roberts,et al.  Direct Assembly of Large Area Nanoparticle Arrays. , 2018, ACS nano.

[2]  A. Roberts,et al.  Directed Chemical Assembly of Single and Clustered Nanoparticles with Silanized Templates. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[3]  Qiming Zhang,et al.  High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites , 2018, Nature Communications.

[4]  M. El-Sayed,et al.  Electrochromic tuning of transparent gold nanorods with poly[(3,4-propylenedioxy)pyrrole] shells in the near-infrared region , 2017 .

[5]  Ziguang Zhao,et al.  Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures , 2017, Advanced materials.

[6]  L. Liz‐Marzán,et al.  Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances , 2017, Science.

[7]  Lei Wang,et al.  Photothermal Surface Plasmon Resonance and Interband Transition‐Enhanced Nanocomposite Hydrogel Actuators with Hand‐Like Dynamic Manipulation , 2017 .

[8]  D. Adams,et al.  Low-Molecular-Weight Gels: The State of the Art , 2017 .

[9]  Sunghan Kim,et al.  Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. , 2017, Chemical reviews.

[10]  S. Wilhelm,et al.  Three-Dimensional Imaging of Transparent Tissues via Metal Nanoparticle Labeling. , 2017, Journal of the American Chemical Society.

[11]  Shuhong Yu,et al.  Highly Stimuli-Responsive Au Nanorods/Poly(N-isopropylacrylamide) (PNIPAM) Composite Hydrogel for Smart Switch. , 2017, ACS applied materials & interfaces.

[12]  J. Popp,et al.  Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. , 2017, Chemical Society reviews.

[13]  Yiping Cui,et al.  SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. , 2017, Chemical reviews.

[14]  Daniel S. Kohane,et al.  External triggering and triggered targeting strategies for drug delivery , 2017 .

[15]  Luis M Liz-Marzán,et al.  Imaging Bacterial Interspecies Chemical Interactions by Surface-Enhanced Raman Scattering. , 2017, ACS nano.

[16]  Itamar Willner,et al.  Stimuli-Controlled Hydrogels and Their Applications. , 2017, Accounts of chemical research.

[17]  Jaakko V. I. Timonen,et al.  Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation , 2017, Nature Communications.

[18]  John R. Clegg,et al.  Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery. , 2017, Accounts of chemical research.

[19]  Andrew J. Wilson,et al.  Super-Resolution Imaging and Plasmonics. , 2017, Chemical reviews.

[20]  T. Mapperson Towards large-scale fabrication of plasmonic nanomaterials by fluid-mediated forces , 2017 .

[21]  O. Martin,et al.  Nanoscale topographical control of capillary assembly of nanoparticles. , 2017, Nature nanotechnology.

[22]  Xue Li,et al.  Stimuli-responsive polymers and their applications , 2017 .

[23]  Yichun Liu,et al.  Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory , 2016, Scientific Reports.

[24]  Xiaoliang Ma,et al.  Multicolor 3D meta-holography by broadband plasmonic modulation , 2016, Science Advances.

[25]  P. Mulvaney,et al.  Single Gold Nanorod Charge Modulation in an Ion Gel Device. , 2016, Nano letters.

[26]  P. Nordlander,et al.  Laser-Induced Spectral Hole-Burning through a Broadband Distribution of Au Nanorods , 2016 .

[27]  Ann Roberts,et al.  Plasmonic Metasurface-Enabled Differential Photodetectors for Broadband Optical Polarization Characterization , 2016 .

[28]  Ali K. Yetisen,et al.  Rewritable three-dimensional holographic data storage via optical forces , 2016 .

[29]  Dong-Hwan Kim,et al.  Nanoparticle polymer composites on solid substrates for plasmonic sensing applications , 2016 .

[30]  Mark G. Kuzyk,et al.  Waveguiding Microactuators Based on a Photothermally Responsive Nanocomposite Hydrogel , 2016 .

[31]  L. Liz‐Marzán,et al.  Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering , 2016, Nature materials.

[32]  Jing Wang,et al.  Near-Infrared Light-Responsive Hydrogel for Specific Recognition and Photothermal Site-Release of Circulating Tumor Cells. , 2016, ACS nano.

[33]  Bhavya Sharma,et al.  Surface-Enhanced Raman Spectroscopy Biosensing: In Vivo Diagnostics and Multimodal Imaging. , 2016, Analytical chemistry.

[34]  S. Yun,et al.  Reconfigurable optical assembly of nanostructures , 2016, Nature Communications.

[35]  Min Gu,et al.  On-chip noninterference angular momentum multiplexing of broadband light , 2016, Science.

[36]  Ann Roberts,et al.  The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures. , 2016, Nano letters.

[37]  Ning Zhang,et al.  An Injectable Self‐Assembling Collagen–Gold Hybrid Hydrogel for Combinatorial Antitumor Photothermal/Photodynamic Therapy , 2016, Advanced materials.

[38]  V. Pettarin,et al.  Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks , 2016 .

[39]  C. Murphy,et al.  Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles , 2016 .

[40]  B. Rothen‐Rutishauser,et al.  Plasmonic nanoparticles and their characterization in physiological fluids. , 2016, Colloids and surfaces. B, Biointerfaces.

[41]  Hui Zhao,et al.  Light-controlled self-assembly of non-photoresponsive nanoparticles. , 2015, Nature chemistry.

[42]  Ning Fang,et al.  Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation , 2015, Scientific Reports.

[43]  J. Chon,et al.  Angular Photothermal Depletion of Randomly Oriented Gold Nanorods for Polarization‐Controlled Multilayered Optical Storage , 2015 .

[44]  Ryan C Hayward,et al.  Photothermally reprogrammable buckling of nanocomposite gel sheets. , 2015, Angewandte Chemie.

[45]  P. Braun,et al.  Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing , 2015 .

[46]  X. Loh,et al.  Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi‐Functional Materials , 2015, Advanced science.

[47]  J. Chon,et al.  Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. , 2014, ACS nano.

[48]  Luis M Liz-Marzán,et al.  Hierarchical self-assembly of gold nanoparticles into patterned plasmonic nanostructures. , 2014, ACS nano.

[49]  Peter Nordlander,et al.  Vivid, full-color aluminum plasmonic pixels , 2014, Proceedings of the National Academy of Sciences.

[50]  Yunuen Montelongo,et al.  Plasmonic nanoparticle scattering for color holograms , 2014, Proceedings of the National Academy of Sciences.

[51]  Yue Zhao,et al.  Light-healable hard hydrogels through photothermally induced melting–crystallization phase transition , 2014 .

[52]  B. Rothen‐Rutishauser,et al.  In vitro dosimetry of agglomerates. , 2014, Nanoscale.

[53]  Luis M Liz-Marzán,et al.  Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. , 2014, Nanoscale.

[54]  J. Chon,et al.  Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage. , 2014, Optics express.

[55]  Haider Butt,et al.  Reusable, robust, and accurate laser-generated photonic nanosensor. , 2014, Nano letters.

[56]  Romain Quidant,et al.  Nanoplasmonics for chemistry. , 2014, Chemical Society reviews.

[57]  Min Gu,et al.  Optical storage arrays: a perspective for future big data storage , 2014, Light: Science & Applications.

[58]  Jeremy J. Baumberg,et al.  Light‐Directed Writing of Chemically Tunable Narrow‐Band Holographic Sensors , 2014 .

[59]  J. Chon,et al.  Alignment of gold nanorods by angular photothermal depletion , 2014 .

[60]  Satoshi Kawata,et al.  Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope. , 2014, Physical review letters.

[61]  Jeffery W. Allen,et al.  Gyromagnetically induced transparency of metasurfaces. , 2013, Physical review letters.

[62]  Yue Zhao,et al.  Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles. , 2013, ACS applied materials & interfaces.

[63]  M. Moniatte,et al.  Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. , 2013, Nanoscale.

[64]  Bing Yan,et al.  SERS tags: novel optical nanoprobes for bioanalysis. , 2013, Chemical reviews.

[65]  R. Vaia,et al.  Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle-particle-surface interactions. , 2012, ACS nano.

[66]  Lei Zhang,et al.  Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing. , 2012, Nano letters.

[67]  Erkan Senses,et al.  Programmable light-controlled shape changes in layered polymer nanocomposites. , 2012, ACS nano.

[68]  Jooho Kim,et al.  Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout. , 2012, Optics express.

[69]  Andreas Henkel,et al.  Single unlabeled protein detection on individual plasmonic nanoparticles. , 2012, Nano letters.

[70]  M. Orrit,et al.  Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. , 2012, Nature nanotechnology.

[71]  Justin R. Kumpfer,et al.  Optically healable supramolecular polymers , 2011, Nature.

[72]  L. Liz‐Marzán,et al.  Microdroplet fabrication of silver–agarose nanocomposite beads for SERS optical accumulation , 2011 .

[73]  Sebastian Schlücker,et al.  Surface enhanced Raman spectroscopy : analytical, biophysical and life science applications , 2010 .

[74]  Yong Qian,et al.  In Situ controllable preparation of gold nanorods in thermo-responsive hydrogels and their application in surface enhanced Raman scattering , 2010 .

[75]  Luis M Liz-Marzán,et al.  Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles , 2010, Journal of The Royal Society Interface.

[76]  E. Katz,et al.  Specific Biochemical‐to‐Optical Signal Transduction by Responsive Thin Hydrogel Films Loaded with Noble Metal Nanoparticles , 2010, Advanced materials.

[77]  Fred Wudl,et al.  The world of smart healable materials , 2010 .

[78]  J. Sabarinathan,et al.  Near-infrared optical response of thin film pH-sensitive hydrogel coated on a gold nanocrescent array. , 2009, Optics express.

[79]  Luis M Liz-Marzán,et al.  Recyclable molecular trapping and SERS detection in silver-loaded agarose gels with dynamic hot spots. , 2009, Analytical chemistry.

[80]  Bartosz A Grzybowski,et al.  Writing self-erasing images using metastable nanoparticle "inks". , 2009, Angewandte Chemie.

[81]  L. Lechuga,et al.  LSPR-based nanobiosensors , 2009 .

[82]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[83]  Duane C. Karns,et al.  Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer , 2009 .

[84]  T. P. Rivera,et al.  Assisted convective-capillary force assembly of gold colloids in a microfluidic cell: Plasmonic properties of deterministic nanostructures , 2008 .

[85]  V. Tsukruk,et al.  Ultrathin Layer-by-Layer Hydrogels with Incorporated Gold Nanorods as pH-Sensitive Optical Materials , 2008 .

[86]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[87]  L. Robeson,et al.  Polymer nanotechnology: Nanocomposites , 2008 .

[88]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[89]  Younan Xia,et al.  Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. , 2008, Journal of materials chemistry.

[90]  Y. Yanagida,et al.  Stimuli-responsive hydrogel-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. , 2008, Analytica chimica acta.

[91]  P. Uhlmann,et al.  Immobilization of Silver Nanoparticles on Responsive Polymer Brushes , 2008 .

[92]  Tarasankar Pal,et al.  Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. , 2007, Chemical reviews.

[93]  Heinz Schmid,et al.  Controlled particle placement through convective and capillary assembly. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[94]  R. Aroca Surface-Enhanced Vibrational Spectroscopy: Aroca/Surface-Enhanced Vibrational Spectroscopy , 2007 .

[95]  Bartosz A Grzybowski,et al.  Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures , 2007, Proceedings of the National Academy of Sciences.

[96]  Rostislav Bukasov,et al.  Highly tunable infrared extinction properties of gold nanocrescents. , 2007, Nano letters.

[97]  V. Pérez-Luna,et al.  Surface-grafted hybrid material consisting of gold nanoparticles and dextran exhibits mobility and reversible aggregation on a surface. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[98]  Sergiy Minko,et al.  Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy. , 2006, Chemical communications.

[99]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[100]  George C Schatz,et al.  Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[102]  G. Pandey,et al.  Nanocomposites. , 2021, Journal of esthetic and restorative dentistry : official publication of the American Academy of Esthetic Dentistry ... [et al.].

[103]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[104]  Benito Rodríguez-González,et al.  Optical Control and Patterning of Gold‐Nanorod–Poly(vinyl alcohol) Nanocomposite Films , 2005 .

[105]  J L West,et al.  Independent Optical Control of Microfluidic Valves Formed from Optomechanically Responsive Nanocomposite Hydrogels , 2005, Advanced materials.

[106]  Sergiy Minko,et al.  Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. , 2004, Journal of the American Chemical Society.

[107]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[108]  A. Heilmann Polymer Films with Embedded Metal Nanoparticles , 2002 .

[109]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[110]  Paul Mulvaney,et al.  Laser Writing in Polarized Silver Nanorod Films , 2002 .

[111]  Gregory V. Hartland,et al.  Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size , 2002 .

[112]  H. Ditlbacher,et al.  Spectrally coded optical data storage by metal nanoparticles. , 2000, Optics letters.

[113]  M. El-Sayed,et al.  Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence , 1999 .

[114]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[115]  G. Hartland,et al.  Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation , 1998 .

[116]  Markus Voelter,et al.  State of the Art , 1997, Pediatric Research.

[117]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[118]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[119]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[120]  Richard K. Moore,et al.  From theory to applications , 1986 .