The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton – a new understanding of phytoplankton ecology?

Summary 1. This is a discussion of the applicability to the phytoplankton of the concepts of ‘plant functional types’ (PFTs) and ‘functional diversity’ (FD), which originated in terrestrial plant ecology. 2. Functional traits driving the performance of phytoplankton species reflect important processes such as growth, sedimentation, grazing losses and nutrient acquisition. 3. This paper presents an objective, mathematical way of assigning PFTs and measuring FD. Ecologists can use this new approach to investigate general hypotheses [e.g. the intermediate disturbance hypothesis (IDH), the insurance hypothesis and synchronicity phenomena] as, for example, in its original formulation the IDH makes its predictions based on FD rather than species diversity.

[1]  G. E. Hutchinson,et al.  The Balance of Nature and Human Impact: The paradox of the plankton , 2013 .

[2]  M. Roderick,et al.  Challenging Theophrastus: A common core list of plant traits for functional ecology , 1999 .

[3]  C. Burns THE RELATIONSHIP BETWEEN BODY SIZE OF FILTER‐FEEDING CLADOCERA AND THE MAXIMUM SIZE OF PARTICLE INGESTED , 1968 .

[4]  H. Mooney,et al.  Biodiversity and Ecosystem Function , 1994, Praktische Zahnmedizin Odonto-Stomatologie Pratique Practical Dental Medicine.

[5]  G. Weithoff,et al.  Effects of water-column mixing on bacteria, phytoplankton, and rotifers under different levels of herbivory in a shallow eutrophic lake , 2000, Oecologia.

[6]  J. Gavis,et al.  Transport limitation of nutrient uptake in phytoplankton1 , 1974 .

[7]  Thomas M. Smith,et al.  Plant Functional Types , 1993 .

[8]  Valério D. Pillar,et al.  On the identification of optimal plant functional types , 1999 .

[9]  Michael L. Rosenzweig,et al.  Species Diversity in Space and Time , 1997 .

[10]  J. P. Grime,et al.  Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory , 1977, The American Naturalist.

[11]  Philippe Usseglio-Polatera,et al.  Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits , 2000 .

[12]  Hunter J. Carrick,et al.  Wind influences phytoplankton biomass and composition in a shallow, productive lake , 1993 .

[13]  A. E. Irish,et al.  Exploring the potential of the PROTECH model to investigate phytoplankton community theory , 1999, Hydrobiologia.

[14]  P. Keddy A pragmatic approach to functional ecology , 1992 .

[15]  Jill McGrady-Steed,et al.  Biodiversity regulates ecosystem predictability , 1997, Nature.

[16]  S. Hurlbert The Nonconcept of Species Diversity: A Critique and Alternative Parameters. , 1971, Ecology.

[17]  C. Reynolds,et al.  Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement , 2002 .

[18]  C. Fonseca,et al.  Species functional redundancy, random extinctions and the stability of ecosystems , 2001 .

[19]  Kevin J. Gaston,et al.  Functional diversity (FD), species richness and community composition , 2002 .

[20]  Colin S. Reynolds,et al.  Vegetation processes in the pelagic : a model for ecosystem theory , 1997 .

[21]  S. Carpenter,et al.  Catastrophic shifts in ecosystems , 2001, Nature.

[22]  U. Gaedke,et al.  The intermediate disturbance hypothesis—species diversity or functional diversity? , 2001 .

[23]  Ulrich Sommer,et al.  The PEG-model of seasonal succession of planktonic events in fresh waters , 1986, Archiv für Hydrobiologie.

[24]  A. E. Irish,et al.  The ecological basis for simulating phytoplankton responses to environmental change (PROTECH) , 2001 .

[25]  V. Huszar,et al.  Phytoplankton in an Amazonian flood-plain lake (Lago Batata, Brasil): diel variation and species strategies , 2000 .

[26]  M. VeraLúcia.HuszarDe,et al.  The relationship between phytoplankton composition and physical–chemical variables: a comparison of taxonomic and morphological–functional descriptors in six temperate lakes , 1998 .

[27]  S. Díaz,et al.  Vive la différence: plant functional diversity matters to ecosystem processes , 2001 .

[28]  M. Loreau,et al.  Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Scales of disturbance and their role in plankton ecology , 1993 .

[30]  Shahid Naeem,et al.  Biodiversity enhances ecosystem reliability , 1997, Nature.

[31]  E. Stoermer,et al.  REJUVENATION OF MELOSIRA GRANULATA (BACILLARIOPHYCEAE) RESTING CELLS FROM THE ANOXIC SEDIMENTS OF DOUGLAS LAKE, MICHIGAN. I. LIGHT MIGROSCOPY AND 14C UPTAKE 1 , 1986 .

[32]  J. Connell Diversity in tropical rain forests and coral reefs. , 1978, Science.

[33]  S. Lavorel,et al.  Plant functional classifications: from general groups to specific groups based on response to disturbance. , 1997, Trends in ecology & evolution.

[34]  E. Willén,et al.  Clustering and canonical correspondence analysis of phytoplankton and environmental variables in Swedish lakes , 1987, Vegetatio.

[35]  F. Gervais Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of a eutrophic lake , 1997 .

[36]  A. E. Irish,et al.  Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth rates , 1997, Hydrobiologia.

[37]  Wolfgang Cramer,et al.  Plant functional types and disturbance dynamics – Introduction , 1999 .

[38]  Thomas M. Smith,et al.  Plant functional types : their relevance to ecosystem properties and global change , 1998 .

[39]  C. Reynolds Phytoplankton assemblages and their periodicity in stratifying lake systems , 1980 .

[40]  Kevin J. Gaston,et al.  Biodiversity : a biology of numbers and difference , 1996 .

[41]  Michelle R. Leishman,et al.  Classifying plants into groups on the basis of associations of individual traits: evidence from Australian semi-arid woodlands , 1992 .

[42]  C. Reynolds The state of freshwater ecology , 1998 .

[43]  A. Kinzig,et al.  Original Articles: Plant Attribute Diversity, Resilience, and Ecosystem Function: The Nature and Significance of Dominant and Minor Species , 1999, Ecosystems.

[44]  Colin S. Reynolds,et al.  Towards a functional classification of the freshwater phytoplankton , 2002 .

[45]  M. Inoue,et al.  Effects of woody debris on the habitat of juvenile masu salmon (Oncorhynchus masou) in northern Japanese streams , 1998 .

[46]  Fabian M Jaksic,et al.  Objective recognition of guilds: testing for statistically significant species clusters , 2004, Oecologia.