Log-Concavity and Fundamental Gaps on Surfaces of Positive Curvature

We study the log-concavity of the first Dirichlet eigenfunction of the Laplacian for convex domains. For positively curved surfaces satisfying a condition involving the curvature and its second derivative, we show that the first eigenfunction is strongly log-concave. Previously, the log-concavity of these eigenfunctions were only known for convex domains of $\mathbb{R}^n$ and $\mathbb{S}^n$. Using this estimate, we establish lower bounds on the fundamental gap of such regions. Furthermore, we study the behavior of these estimates under Ricci flow and other deformations of the metric.

[1]  Gabriel Khan,et al.  Negative curvature constricts the fundamental gap of convex domains , 2022, 2211.06404.

[2]  Christian Rose,et al.  Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains , 2021, Mathematische Nachrichten.

[3]  Alina Stancu,et al.  The Fundamental Gap of Horoconvex Domains in ℍn , 2021, International Mathematics Research Notices.

[4]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[5]  Guofang Wei,et al.  Fundamental gap estimate for convex domains on sphere — the case $n=2$ , 2018, Communications in Analysis and Geometry.

[6]  Qi S. Zhang,et al.  Fundamental Gap of Convex Domains in the Spheres , 2017, American Journal of Mathematics.

[7]  Lili Wang,et al.  Sharp fundamental gap estimate on convex domains of sphere , 2016, Journal of Differential Geometry.

[8]  C. Harris,et al.  Diameter , 2016, Definitions.

[9]  B. Andrews,et al.  Eigenvalue Comparison on Bakry-Emery Manifolds , 2011, 1111.4967.

[10]  Ben Andrews,et al.  Proof of the fundamental gap conjecture , 2010, 1006.1686.

[11]  Cédric Villani,et al.  On the Ma–Trudinger–Wang curvature on surfaces , 2010 .

[12]  Shing-Tung Yau,et al.  An Estimate of the Gap of the First Two Eigenvalues in the Schr , 2009, 0902.2250.

[13]  C. Villani STABILITY OF A 4TH-ORDER CURVATURE CONDITION ARISING IN OPTIMAL TRANSPORT THEORY , 2008 .

[14]  Jun Ling A LOWER BOUND OF THE FIRST DIRICHLET EIGENVALUE OF A COMPACT MANIFOLD WITH POSITIVE RICCI CURVATURE , 2004, math/0406120.

[15]  F.-Y. Wang On estimation of the Dirichlet spectral gap , 2000 .

[16]  D. Bakry,et al.  Some New Results on Eigenvectors via Dimension, Diameter, and Ricci Curvature☆ , 2000 .

[17]  K. Oden,et al.  Spectral gap estimates on compact manifolds , 1999 .

[18]  G. Huisken Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature , 1986 .

[19]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[20]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[21]  Archiv Der Mathematik , 1954, The Mathematical Gazette.

[22]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[23]  G. Catino,et al.  A Perspective on Canonical Riemannian Metrics , 2020 .

[24]  Guofang Wei,et al.  Fundamental Gap Comparison , 2018 .

[25]  Lei Ni Estimates on the modulus of expansion for vector fields solving nonlinear equations , 2012 .

[26]  E. Harrell Communications in Partial Differential Equations , 2007 .

[27]  L. Peter,et al.  On the parabolic kernel of the Schr 6 dinger operator , 2006 .

[28]  M. Gage,et al.  Curve shortening on surfaces , 1990 .

[29]  Yin‐Chin Shih A counterexample to the convexity property of the first eigenfunction on a convex domain of negative curvature , 1989 .

[30]  Richard S. Hamilton,et al.  The Ricci flow on surfaces , 1986 .

[31]  Alan Weinstein,et al.  Progress in mathematics , 1979 .

[32]  Arild Stubhaug Acta Mathematica , 1886, Nature.

[33]  Paul Painlevé Henri Poincare , 2022 .