Theory of Orientation and Stereoselection

[1]  B. Thyagarajan Mechanisms of molecular migrations , 1968 .

[2]  Kenichi Fukui,et al.  A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons , 1952 .

[3]  M. Dewar A Molecular Orbital Theory of Organic Chemistry. VI.1 Aromatic Substitution and Addition , 1952 .

[4]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[5]  D. Shriver Preparation and Structures of Metal Cyanide-Lewis Acid Bridge Compounds , 1963 .

[6]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[7]  E. Davidson,et al.  Theoretical Study of the BeH Molecule , 1968 .

[8]  G. Olah,et al.  Stable Carbonium Ions. XIV.1Cyclopropylcarbonium Ions , 1965 .

[9]  H. Brion,et al.  Electronic Structure of Carbon Monoxide , 1960 .

[10]  R. Hoffmann Orbital Symmetries and endo-exo Relationships in Concerted Cycloaddition Reaction (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .

[11]  A. Walsh The structures of ethylene oxide, cyclopropane, and related molecules , 1949 .

[12]  Klaus Ruedenberg,et al.  The Physical Nature of the Chemical Bond , 1962 .

[13]  W. G. Brown,et al.  Mechanism of Lithium Aluminum Hydride Reactions , 1949 .

[14]  Kenichi Fukui,et al.  MO-Theoretical Approach to the Mechanism of Charge Transfer in the Process of Aromatic Substitutions , 1957 .

[15]  D. Lemal,et al.  Dienes from 3-Pyrrolines. A Stereospecific Deamination , 1966 .

[16]  A. Karo Configuration Interaction in the Lithium Hydride Molecule. II. An SCF LCAO‐MO Approach , 1959 .

[17]  A. C. Wahl,et al.  Extended Hartree—Fock Wavefunctions: Optimized Valence Configurations for H2 and Li2, Optimized Double Configurations for F2 , 1966 .

[18]  Andrew Streitwieser,et al.  Molecular orbital theory for organic chemists , 1961 .

[19]  M. J. Goldstein Bicycloaromaticity. 4m + 2, 4n rule , 1967 .

[20]  Robert G. Parr,et al.  A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II , 1953 .

[21]  J. D. Petke,et al.  Self-consistent-field calculation of the geometry of protonated cyclopropane , 1968 .

[22]  R. Hoffmann An Extended Hückel Theory. I. Hydrocarbons , 1963 .

[23]  E. Clementi Study of the Electronic Structure of Molecules. IV. All‐Electron SCF Wavefunction for the Ground State of Pyridine , 1967 .

[24]  T. Takeshita,et al.  Deuterium Tracer Studies on the Elimination Reactions of Norbornyl Tosylate and Bromide. XI , 1964 .

[25]  H. F. King,et al.  Gaussian Basis SCF Calculations for OH−, H2O, NH3, and CH4 , 1967 .

[26]  C. Coulson The theory of the structure of free radicals , 1947 .

[27]  R. S. Mulliken The assignment of quantum numbers for electrons in molecules. Extracts from Phys. Rev. 32, 186–222 (1928), plus currently written annotations , 1967 .

[28]  Roald Hoffmann,et al.  Selection Rules for Sigmatropic Reactions (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .

[29]  J. C. Slater Atomic Shielding Constants , 1930 .

[30]  J. Gajewski,et al.  Tetramethylenethane. Degenerate thermal rearrangement of 1,2-dimethylenecyclobutane , 1967 .

[31]  R. Brown Molecular orbitals and organic reactions , 1952 .

[32]  N. Deno,et al.  Carbonium Ions. XIX. The Intense Conjugation in Cyclopropyl Carbonium Ions1 , 1965 .

[33]  R. S. Mulliken Criteria for the Construction of Good Self‐Consistent‐Field Molecular Orbital Wave Functions, and the Significance of LCAO‐MO Population Analysis , 1962 .

[34]  H. Nakatsuji,et al.  Electronic structure of carbonium ions. Alkyl cations and protonated hydrocarbons , 1968 .

[35]  S. Peyerimhoff,et al.  Theoretical Analysis of the Effects of Hydrogenation in Hydrocarbons: Accurate SCF MO Wavefunctions for C2H2, C2H4, and C2H6 , 1967 .

[36]  Sidney Weinbaum,et al.  The Normal State of the Hydrogen Molecule , 1933 .

[37]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[38]  W. Doering,et al.  The overlap of two allyl radicals or a four-centered transition state in the cope rearrangement☆ , 1962 .

[39]  E. Hückel,et al.  Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III , 1932 .

[40]  Lionel Salem,et al.  Intermolecular orbital theory of the interaction between conjugated systems , 1968 .

[41]  Enrico Clementi,et al.  SCF‐MO Wave Functions for the Hydrogen Fluoride Molecule , 1962 .

[42]  W. Huo Electronic Structure of CO and BF , 1965 .

[43]  R. F. Hudson,et al.  Polyelectronic perturbation treatment of chemical reactivity , 1967 .

[44]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[45]  G. W. Wheland A Quantum Mechanical Investigation of the Orientation of Substituents in Aromatic Molecules , 1942 .

[46]  L. C. Snyder,et al.  Heats of reaction from self-consistent-field energies of closed-shell molecules , 1969 .

[47]  J. Pople,et al.  Electron interaction in unsaturated hydrocarbons , 1953 .

[48]  C. Sandorfy,et al.  Pariser and Parr type calculations on saturated hydrocarbons I , 1966 .

[49]  D. Santry,et al.  Molecular orbital calculations for norbornene and some related nonclassical intermediates , 1969 .

[50]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[51]  W. Kołos,et al.  Accurate Electronic Wave Functions for the H 2 Molecule , 1960 .

[52]  E. Clementi,et al.  Study of the Electronic Structure of Molecules. III. Pyrrole Ground‐State Wavefunction , 1967 .

[53]  E. Kooyman,et al.  Bicyclanes—I : The halogenation of 2:2:1-bicycloheptane (norbornane) , 1958 .

[54]  A. Imamura,et al.  The semi-empirical SCF Treatment of σ-π system I. Peptide molecule , 1966 .

[55]  W. Lipscomb,et al.  Molecular SCF Calculations on CH4, C2H2, C2H4, C2H6, BH3, B2H6, NH3, and HCN , 1966 .

[56]  R. S. Mulliken Molecular Compounds and their Spectra. II , 1952 .

[57]  J. Higuchi Electronic Structures of the CH Radical , 1954 .

[58]  A. Walsh 468. The electronic orbitals, shapes, and spectra of polyatomic molecules. Part III. HAB and HAAH molecules , 1953 .

[59]  Lionel Salem,et al.  Intermolecular orbital theory of the interaction between conjugated systems. II. Thermal and photochemical cycloadditions , 1968 .

[60]  J. L. Stephenson,et al.  Stereochemistry of the Claisen Rearrangement1 , 1965 .

[61]  W. Kołos,et al.  Nonadiabatic Theory for Diatomic Molecules and Its Application to the Hydrogen Molecule , 1963 .

[62]  R. Pitzer Calculation of the Barrier to Internal Rotation in Ethane with Improved Exponential Wavefunctions , 1967 .

[63]  C. C. J. Roothaan,et al.  Self-Consistent Field Theory for Open Shells of Electronic Systems , 1960 .

[64]  E. Havinga,et al.  Remarks on the specificities of the photochemical and thermal transformations in the vitamin D field , 1961 .

[65]  J. A. Berson The stereochemistry of sigmatropic rearrangements. Tests of the predictive power of orbital symmetry rules , 1968 .

[66]  E. Hückel,et al.  Zur Quantentheorie der Doppelbindung , 1930 .

[67]  T. Yonezawa,et al.  Semi-empirical molecular orbital calculations the electronic structure and the spin-orbit coupling in azabenzenes , 1969 .

[68]  G. Klopman,et al.  Chemical reactivity and the concept of charge- and frontier-controlled reactions , 1968 .

[69]  H. Jaffe,et al.  Use of the CNDO Method in Spectroscopy. I. Benzene, Pyridine, and the Diazines , 1968 .

[70]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[71]  G. Stork,et al.  The Stereochemistry of the SN2' Reaction. II1 , 1956 .

[72]  H. L. Goering,et al.  Stereochemistry of Allylic Rearrangements. IV. The Stereochemistry of the Conversion of cis- and trans-5-Methyl-2-cyclohexenol to 5-Methyl-2-cyclohexenyl Chloride1 , 1955 .

[73]  C. Sandorfy,et al.  LCAO MO CALCULATIONS ON SATURATED HYDROCARBONS AND THEIR SUBSTITUTED DERIVATIVES , 1955 .

[74]  Linus Pauling,et al.  The Nature of the Chemical Bond. V. The Quantum‐Mechanical Calculation of the Resonance Energy of Benzene and Naphthalene and the Hydrocarbon Free Radicals , 1933 .

[75]  H. Eyring,et al.  Calculation of Dipole Moments from Rates of Nitration of Substituted Benzenes and Its Significance for Organic Chemistry , 1940 .

[76]  Kenichi Fukui,et al.  Molecular Orbital Theory of Orientation in Aromatic, Heteroaromatic, and Other Conjugated Molecules , 1954 .

[77]  O. Sǐnanoğlu,et al.  Molecular Binding Energies , 1966 .

[78]  D. Hartree The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[79]  G. Closs,et al.  Determination of Conformational Preference in Arylcyclopropanes by Nuclear Magnetic Resonance1 , 1965 .

[80]  Michael J. S. Dewar,et al.  The molecular orbital theory of organic chemistry , 1969 .

[81]  O. Sǐnanoğlu,et al.  Sigma molecular orbital theory , 1970 .