Theory of Orientation and Stereoselection
暂无分享,去创建一个
[1] B. Thyagarajan. Mechanisms of molecular migrations , 1968 .
[2] Kenichi Fukui,et al. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons , 1952 .
[3] M. Dewar. A Molecular Orbital Theory of Organic Chemistry. VI.1 Aromatic Substitution and Addition , 1952 .
[4] J. Pople,et al. Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .
[5] D. Shriver. Preparation and Structures of Metal Cyanide-Lewis Acid Bridge Compounds , 1963 .
[6] T. Koopmans,et al. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .
[7] E. Davidson,et al. Theoretical Study of the BeH Molecule , 1968 .
[8] G. Olah,et al. Stable Carbonium Ions. XIV.1Cyclopropylcarbonium Ions , 1965 .
[9] H. Brion,et al. Electronic Structure of Carbon Monoxide , 1960 .
[10] R. Hoffmann. Orbital Symmetries and endo-exo Relationships in Concerted Cycloaddition Reaction (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .
[11] A. Walsh. The structures of ethylene oxide, cyclopropane, and related molecules , 1949 .
[12] Klaus Ruedenberg,et al. The Physical Nature of the Chemical Bond , 1962 .
[13] W. G. Brown,et al. Mechanism of Lithium Aluminum Hydride Reactions , 1949 .
[14] Kenichi Fukui,et al. MO-Theoretical Approach to the Mechanism of Charge Transfer in the Process of Aromatic Substitutions , 1957 .
[15] D. Lemal,et al. Dienes from 3-Pyrrolines. A Stereospecific Deamination , 1966 .
[16] A. Karo. Configuration Interaction in the Lithium Hydride Molecule. II. An SCF LCAO‐MO Approach , 1959 .
[17] A. C. Wahl,et al. Extended Hartree—Fock Wavefunctions: Optimized Valence Configurations for H2 and Li2, Optimized Double Configurations for F2 , 1966 .
[18] Andrew Streitwieser,et al. Molecular orbital theory for organic chemists , 1961 .
[19] M. J. Goldstein. Bicycloaromaticity. 4m + 2, 4n rule , 1967 .
[20] Robert G. Parr,et al. A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II , 1953 .
[21] J. D. Petke,et al. Self-consistent-field calculation of the geometry of protonated cyclopropane , 1968 .
[22] R. Hoffmann. An Extended Hückel Theory. I. Hydrocarbons , 1963 .
[23] E. Clementi. Study of the Electronic Structure of Molecules. IV. All‐Electron SCF Wavefunction for the Ground State of Pyridine , 1967 .
[24] T. Takeshita,et al. Deuterium Tracer Studies on the Elimination Reactions of Norbornyl Tosylate and Bromide. XI , 1964 .
[25] H. F. King,et al. Gaussian Basis SCF Calculations for OH−, H2O, NH3, and CH4 , 1967 .
[26] C. Coulson. The theory of the structure of free radicals , 1947 .
[27] R. S. Mulliken. The assignment of quantum numbers for electrons in molecules. Extracts from Phys. Rev. 32, 186–222 (1928), plus currently written annotations , 1967 .
[28] Roald Hoffmann,et al. Selection Rules for Sigmatropic Reactions (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .
[29] J. C. Slater. Atomic Shielding Constants , 1930 .
[30] J. Gajewski,et al. Tetramethylenethane. Degenerate thermal rearrangement of 1,2-dimethylenecyclobutane , 1967 .
[31] R. Brown. Molecular orbitals and organic reactions , 1952 .
[32] N. Deno,et al. Carbonium Ions. XIX. The Intense Conjugation in Cyclopropyl Carbonium Ions1 , 1965 .
[33] R. S. Mulliken. Criteria for the Construction of Good Self‐Consistent‐Field Molecular Orbital Wave Functions, and the Significance of LCAO‐MO Population Analysis , 1962 .
[34] H. Nakatsuji,et al. Electronic structure of carbonium ions. Alkyl cations and protonated hydrocarbons , 1968 .
[35] S. Peyerimhoff,et al. Theoretical Analysis of the Effects of Hydrogenation in Hydrocarbons: Accurate SCF MO Wavefunctions for C2H2, C2H4, and C2H6 , 1967 .
[36] Sidney Weinbaum,et al. The Normal State of the Hydrogen Molecule , 1933 .
[37] P. Löwdin. On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .
[38] W. Doering,et al. The overlap of two allyl radicals or a four-centered transition state in the cope rearrangement☆ , 1962 .
[39] E. Hückel,et al. Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III , 1932 .
[40] Lionel Salem,et al. Intermolecular orbital theory of the interaction between conjugated systems , 1968 .
[41] Enrico Clementi,et al. SCF‐MO Wave Functions for the Hydrogen Fluoride Molecule , 1962 .
[42] W. Huo. Electronic Structure of CO and BF , 1965 .
[43] R. F. Hudson,et al. Polyelectronic perturbation treatment of chemical reactivity , 1967 .
[44] R. S. Mulliken. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .
[45] G. W. Wheland. A Quantum Mechanical Investigation of the Orientation of Substituents in Aromatic Molecules , 1942 .
[46] L. C. Snyder,et al. Heats of reaction from self-consistent-field energies of closed-shell molecules , 1969 .
[47] J. Pople,et al. Electron interaction in unsaturated hydrocarbons , 1953 .
[48] C. Sandorfy,et al. Pariser and Parr type calculations on saturated hydrocarbons I , 1966 .
[49] D. Santry,et al. Molecular orbital calculations for norbornene and some related nonclassical intermediates , 1969 .
[50] Clemens C. J. Roothaan,et al. New Developments in Molecular Orbital Theory , 1951 .
[51] W. Kołos,et al. Accurate Electronic Wave Functions for the H 2 Molecule , 1960 .
[52] E. Clementi,et al. Study of the Electronic Structure of Molecules. III. Pyrrole Ground‐State Wavefunction , 1967 .
[53] E. Kooyman,et al. Bicyclanes—I : The halogenation of 2:2:1-bicycloheptane (norbornane) , 1958 .
[54] A. Imamura,et al. The semi-empirical SCF Treatment of σ-π system I. Peptide molecule , 1966 .
[55] W. Lipscomb,et al. Molecular SCF Calculations on CH4, C2H2, C2H4, C2H6, BH3, B2H6, NH3, and HCN , 1966 .
[56] R. S. Mulliken. Molecular Compounds and their Spectra. II , 1952 .
[57] J. Higuchi. Electronic Structures of the CH Radical , 1954 .
[58] A. Walsh. 468. The electronic orbitals, shapes, and spectra of polyatomic molecules. Part III. HAB and HAAH molecules , 1953 .
[59] Lionel Salem,et al. Intermolecular orbital theory of the interaction between conjugated systems. II. Thermal and photochemical cycloadditions , 1968 .
[60] J. L. Stephenson,et al. Stereochemistry of the Claisen Rearrangement1 , 1965 .
[61] W. Kołos,et al. Nonadiabatic Theory for Diatomic Molecules and Its Application to the Hydrogen Molecule , 1963 .
[62] R. Pitzer. Calculation of the Barrier to Internal Rotation in Ethane with Improved Exponential Wavefunctions , 1967 .
[63] C. C. J. Roothaan,et al. Self-Consistent Field Theory for Open Shells of Electronic Systems , 1960 .
[64] E. Havinga,et al. Remarks on the specificities of the photochemical and thermal transformations in the vitamin D field , 1961 .
[65] J. A. Berson. The stereochemistry of sigmatropic rearrangements. Tests of the predictive power of orbital symmetry rules , 1968 .
[66] E. Hückel,et al. Zur Quantentheorie der Doppelbindung , 1930 .
[67] T. Yonezawa,et al. Semi-empirical molecular orbital calculations the electronic structure and the spin-orbit coupling in azabenzenes , 1969 .
[68] G. Klopman,et al. Chemical reactivity and the concept of charge- and frontier-controlled reactions , 1968 .
[69] H. Jaffe,et al. Use of the CNDO Method in Spectroscopy. I. Benzene, Pyridine, and the Diazines , 1968 .
[70] V. Fock,et al. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .
[71] G. Stork,et al. The Stereochemistry of the SN2' Reaction. II1 , 1956 .
[72] H. L. Goering,et al. Stereochemistry of Allylic Rearrangements. IV. The Stereochemistry of the Conversion of cis- and trans-5-Methyl-2-cyclohexenol to 5-Methyl-2-cyclohexenyl Chloride1 , 1955 .
[73] C. Sandorfy,et al. LCAO MO CALCULATIONS ON SATURATED HYDROCARBONS AND THEIR SUBSTITUTED DERIVATIVES , 1955 .
[74] Linus Pauling,et al. The Nature of the Chemical Bond. V. The Quantum‐Mechanical Calculation of the Resonance Energy of Benzene and Naphthalene and the Hydrocarbon Free Radicals , 1933 .
[75] H. Eyring,et al. Calculation of Dipole Moments from Rates of Nitration of Substituted Benzenes and Its Significance for Organic Chemistry , 1940 .
[76] Kenichi Fukui,et al. Molecular Orbital Theory of Orientation in Aromatic, Heteroaromatic, and Other Conjugated Molecules , 1954 .
[77] O. Sǐnanoğlu,et al. Molecular Binding Energies , 1966 .
[78] D. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.
[79] G. Closs,et al. Determination of Conformational Preference in Arylcyclopropanes by Nuclear Magnetic Resonance1 , 1965 .
[80] Michael J. S. Dewar,et al. The molecular orbital theory of organic chemistry , 1969 .
[81] O. Sǐnanoğlu,et al. Sigma molecular orbital theory , 1970 .