The Local Projective Shape of Smooth Surfaces and Their Outlines

This article examines projectively-invariant local geometric properties of smooth curves and surfaces. Oriented projective differential geometry is proposed as a general framework for establishing such invariants and characterizing the local projective shape of surfaces and their outlines. It is applied to two problems: (1) the projective generalization of Koenderink’s famous characterization of convexities, concavities, and inflections of the apparent contours of solids bounded by smooth surfaces, and (2) the image-based construction of rim meshes, which provide a combinatorial description of the arrangement induced on the surface of an object by the contour generators associated with multiple cameras observing it.

[1]  E. Cartan,et al.  La théorie des groupes finis et continus et la Géométrie différentielle traitées par la méthode du repère mobile : leçons professées à la Sorbonne , 1937 .

[2]  E. T. Davies,et al.  Projektive Differentialgeometrie. II , 1951, The Mathematical Gazette.

[3]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[4]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[5]  Bruce G. Baumgart,et al.  Geometric modeling for computer vision. , 1974 .

[6]  M. Docarmo Differential geometry of curves and surfaces , 1976 .

[7]  J J Koenderink,et al.  What Does the Occluding Contour Tell Us about Solid Shape? , 1984, Perception.

[8]  Jean Ponce,et al.  Describing surfaces , 1985, Comput. Vis. Graph. Image Process..

[9]  J. H. Rieger Three-dimensional motion from fixed points of a deforming profile curve. , 1986, Optics letters.

[10]  Jorge Stolfi,et al.  Oriented projective geometry , 1987, SCG '87.

[11]  Isaac Weiss,et al.  Projective invariants of shapes , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[13]  Roger Mohr,et al.  3-d Structure Inference from Image Sequences , 1991, Int. J. Pattern Recognit. Artif. Intell..

[14]  John Porrill,et al.  Curve matching and stereo calibration , 1991, Image Vis. Comput..

[15]  J. Stolfi Oriented projective spaces , 1991 .

[16]  Olivier D. Faugeras,et al.  Using Extremal Boundaries for 3-D Object Modeling , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[18]  Andrew Zisserman,et al.  Applications of Invariance in Computer Vision , 1993, Lecture Notes in Computer Science.

[19]  Max A. Viergever,et al.  Affine and projective differential geometric invariants of space curves , 1993, Optics & Photonics.

[20]  Olivier D. Faugeras,et al.  Cartan's Moving Frame Method and Its Application to the Geometry and Evolution of Curves in the Euclidean, Affine and Projective Planes , 1993, Applications of Invariance in Computer Vision.

[21]  A. Laurentini,et al.  The Visual Hull Concept for Silhouette-Based Image Understanding , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Roberto Cipolla,et al.  Motion from the frontier of curved surfaces , 1995, Proceedings of IEEE International Conference on Computer Vision.

[23]  Olivier D. Faugeras,et al.  Oriented Projective Geometry for Computer Vision , 1996, ECCV.

[24]  Edmond Boyer,et al.  Object Models from Contour Sequences , 1996, ECCV.

[25]  Tom,et al.  Oriented Projective Reconstruction Oriented Projective Reconstruction Tomm a S Werner, Tomm a S Pajdla, Vv Aclav Hlavv a C 2) , 1998 .

[26]  G. Stiny Shape , 1999 .

[27]  O. Faugeras,et al.  The Geometry of Multiple Images , 1999 .

[28]  Emden R. Gansner,et al.  An open graph visualization system and its applications to software engineering , 2000, Softw. Pract. Exp..

[29]  Emden R. Gansner,et al.  An open graph visualization system and its applications to software engineering , 2000 .

[30]  Andrew Zisserman,et al.  Surface Reconstruction from Multiple Views Using Apparent Contours and Surface Texture , 2000, Confluence of Computer Vision and Computer Graphics.

[31]  Tomás Pajdla,et al.  Cheirality in Epipolar Geometry , 2001, ICCV.

[32]  Jean Ponce,et al.  On computing exact visual hulls of solids bounded by smooth surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[33]  Olivier D. Faugeras,et al.  The geometry of multiple images - the laws that govern the formation of multiple images of a scene and some of their applications , 2001 .

[34]  Tomás Pajdla,et al.  Oriented Matching Constraints , 2001, BMVC.

[35]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[36]  Frédo Durand,et al.  The 3D visibility complex , 2002, TOGS.

[37]  Jean Ponce,et al.  The Local Projective Shape of Smooth Surfaces and Their Outlines , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[38]  Tomás Pajdla,et al.  Joint Orientation of Epipoles , 2003, BMVC.

[39]  J. Koenderink,et al.  The internal representation of solid shape with respect to vision , 1979, Biological Cybernetics.

[40]  David J. Kriegman,et al.  The Bas-Relief Ambiguity , 2004, International Journal of Computer Vision.

[41]  Olivier D. Faugeras,et al.  The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.

[42]  Andrew Blake,et al.  Surface shape from the deformation of apparent contours , 1992, International Journal of Computer Vision.

[43]  Steven Haker,et al.  Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998, International Journal of Computer Vision.

[44]  J. Koenderink,et al.  Geometry of binocular vision and a model for stereopsis , 2004, Biological Cybernetics.

[45]  Luc Van Gool,et al.  Foundations of semi-differential invariants , 2005, International Journal of Computer Vision.

[46]  Marc Pollefeys,et al.  Multiple view geometry , 2005 .

[47]  Olivier D. Faugeras,et al.  A theory of the motion fields of curves , 1993, International Journal of Computer Vision.

[48]  Jean Ponce,et al.  Projective Visual Hulls , 2007, International Journal of Computer Vision.

[49]  E. J. Wilczynski Projective Differential Geometry of Curves and Surfaces , 2007 .