Global dynamics of zooplankton and harmful algae in flowing habitats

Abstract This paper is devoted to the study of two advection–dispersion–reaction models arising from the dynamics of harmful algae and zooplankton in flowing-water habitats where a main channel is coupled to a hydraulic storage zone, representing an ensemble of fringing coves on the shoreline. For the system modeling the dynamics of algae and their toxin that contains little limiting nutrient, we establish a threshold type result on the global attractivity in terms of the basic reproduction ratio for algae. For the model with zooplankton that eat the algae and are inhibited by the toxin produced by algae, we show that there exists a coexistence steady state and the zooplankton is uniformly persistent provided that two basic reproduction ratios for algae and zooplankton are greater than unity.

[1]  B. C. Baltzis,et al.  The growth of pure and simple microbial competitors in a moving distributed medium. , 1992, Mathematical biosciences.

[2]  Coexistence in the unstirred chemostat , 1998 .

[3]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[4]  Xiao-Qiang Zhao,et al.  A Nonlocal and Time-Delayed Reaction-Diffusion Model of Dengue Transmission , 2011, SIAM J. Appl. Math..

[5]  Roy A. Walters,et al.  Simulation of solute transport in a mountain pool‐and‐riffle stream: A transient storage model , 1983 .

[6]  S. Hsu,et al.  Competition and coexistence in flowing habitats with a hydraulic storage zone. , 2009, Mathematical biosciences.

[7]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[8]  S. Hsu,et al.  Dynamics of a Periodically Pulsed Bio-Reactor Model With a Hydraulic Storage Zone , 2011 .

[9]  Holger R. Maier,et al.  Flow management strategies to control blooms of the cyanobacterium, Anabaena circinalis, in the River Murray at Morgan, south Australia , 2001 .

[10]  Gregory M. Southard,et al.  Prymnesium parvum: The Texas Experience 1 , 2010 .

[11]  D. Roelke,et al.  A decade of fish-killing Prymnesium parvum blooms in Texas: roles of inflow and salinity , 2011 .

[12]  T. Yasumoto,et al.  The structure elucidation and biological activities of high molecular weight algal toxins: maitotoxin, prymnesins and zooxanthellatoxins. , 2000, Natural product reports.

[13]  A. Humpage,et al.  Phenotypical variation in a toxic strain of the phytoplankter, Cylindrospermopsis raciborskii (nostocales, cyanophyceae) during batch culture , 2001, Environmental toxicology.

[14]  Joydev Chattopadhyay,et al.  Nutrient-limited toxin production and the dynamics of two phytoplankton in culture media: A mathematical model , 2008 .

[15]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[16]  Xiao-Qiang Zhao,et al.  Computation of the basic reproduction numbers for reaction-diffusion epidemic models , 2023, Mathematical biosciences and engineering : MBE.

[17]  T. Yasumoto,et al.  The structure elucidation and biological activities ofhigh molecular weight algal toxins: maitotoxin, prymnesins andzooxanthellatoxins , 2000 .

[18]  Mary Ballyk,et al.  Effects of Random Motility on Microbial Growth and Competition in a Flow Reactor , 1998, SIAM J. Appl. Math..

[19]  James P. Grover,et al.  Hydraulic flushing as a Prymnesium parvum bloom-terminating mechanism in a subtropical lake. , 2010 .

[20]  E. Granéli,et al.  Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions , 2003 .

[21]  Xiao-Qiang Zhao,et al.  Robust persistence for semidynamical systems , 2001 .

[22]  Horst R. Thieme,et al.  Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations , 1992 .

[23]  James P. Grover,et al.  Spatial variation of harmful algae and their toxins in flowing-water habitats: a theoretical exploration , 2011 .

[24]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[25]  Tosio Kato Perturbation theory for linear operators , 1966 .

[26]  Roger D. Nussbaum,et al.  Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem , 1981 .

[27]  Hal L. Smith,et al.  Abstract functional-differential equations and reaction-diffusion systems , 1990 .

[28]  Yu Jin,et al.  R0 Analysis of a Spatiotemporal Model for a Stream Population , 2012, SIAM J. Appl. Dyn. Syst..

[29]  Xiao-Qiang Zhao,et al.  Global Attractors and Steady States for Uniformly Persistent Dynamical Systems , 2005, SIAM J. Math. Anal..

[30]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[31]  Simon M. Mitrovic,et al.  Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia , 2011 .

[32]  Carmelo R. Tomas,et al.  The brevetoxin and brevenal composition of three Karenia brevis clones at different salinities and nutrient conditions , 2010 .

[33]  Horst R. Thieme,et al.  Spectral Bound and Reproduction Number for Infinite-Dimensional Population Structure and Time Heterogeneity , 2009, SIAM J. Appl. Math..

[34]  A. Humpage,et al.  Cyanobacterial (blue‐green algal) toxins in water supplies: Cylindrospermopsins , 2006, Environmental toxicology.

[35]  Xiao-Qiang Zhao,et al.  Dynamical systems in population biology , 2003 .

[36]  E. Granéli,et al.  Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios , 1999 .

[37]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[38]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[39]  K. Deimling Nonlinear functional analysis , 1985 .