Objective Function Adjustment Algorithm for Combinatorial Optimization Problems

An improved algorithm of Guided Local Search called objective function adjustment algorithm is proposed for combinatorial optimization problems. The performance of Guided Local Search is improved by objective function adjustment algorithm using multipliers which can be adjusted during the search process. Moreover, the idea of Tabu Search is introduced into the objective function adjustment algorithm to further improve the performance. The simulation results based on some TSPLIB benchmark problems showed that the objective function adjustment algorithm could find better solutions than Local Search, Guided Local Search and Tabu Search.