Modeling microstructural evolution in irradiated materials with cluster dynamics methods: A review

Abstract As both the design of material systems for nuclear energy applications and the number of reactor designs being proposed increase the need for material models predicting the evolution of microstructures as a function of chemistry, texture, grain size, precipitate content, etc., and irradiation conditions is steadily increasing. This manuscript aims at presenting a review of the different cluster dynamics modeling schemes that have emerged worldwide over the past decade(s). Further, the manuscript also critically discusses limitations in existing approaches and identifies potential routes for future developments.

[1]  M. Wehner Numerical Evaluation of Path Integral Solutions to Fokker-Planck Equations with Application to Void Formation. , 1983 .

[2]  B. Wirth,et al.  Modeling spatially dependent kinetics of helium desorption in BCC iron following He ion implantation , 2010 .

[3]  E. Martínez,et al.  Synchronous parallel spatially resolved stochastic cluster dynamics , 2016 .

[4]  C. J. Ortiz,et al.  Simulation of defect evolution in irradiated materials: Role of intracascade clustering and correlated recombination , 2007 .

[5]  B. Wirth,et al.  On helium cluster dynamics in tungsten plasma facing components of fusion devices , 2014 .

[6]  Brian D. Wirth,et al.  Molecular dynamics simulation of primary irradiation defect formation in Fe–10%Cr alloy , 2006 .

[7]  M. Wehner,et al.  Vacancy cluster evolution in metals under irradiation , 1985 .

[8]  R. Bullough,et al.  The rate theory of swelling due to void growth in irradiated metals , 1972 .

[9]  C. Woo,et al.  Production bias due to clustering of point defects in irradiation-induced cascades , 1992 .

[10]  C. English,et al.  The molecular dynamics simulation of irradiation damage cascades in copper using a many-body potential , 1992 .

[11]  Alain Barbu,et al.  Cluster-dynamics modelling of defects in α-iron under cascade damage conditions , 2008 .

[12]  M. Speight,et al.  The influence of cascade damage on irradiation creep and swelling , 1977 .

[13]  J. Marian,et al.  Modeling fast neutron irradiation damage accumulation in tungsten , 2012 .

[14]  J. Crocombette,et al.  Rate theory cluster dynamics simulations including spatial correlations within displacement cascades , 2012 .

[15]  Stanislav I Golubov,et al.  Stability and mobility of defect clusters and dislocation loops in metals , 2000 .

[16]  Enrique Martínez,et al.  Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems , 2008, J. Comput. Phys..

[17]  C. Woo,et al.  The Concept of Production Bias and Its Possible Role in Defect Accumulation under Cascade Damage Conditions , 1990 .

[18]  B. Wirth,et al.  Quantifying He-point defect interactions in Fe through coordinated experimental and modeling studies of He-ion implanted single-crystal Fe , 2013 .

[19]  L. Mansur Theory and experimental background on dimensional changes in irradiated alloys , 1994 .

[20]  H. Wiedersich On the theory of void formation during irradiation , 1972 .

[21]  V. F. Sears KINETICS OF VOID GROWTH IN IRRADIATED METALS. , 1971 .

[22]  B. N. Singh,et al.  Impact of glissile interstitial loop production in cascades on defect accumulation in the transient , 1993 .

[23]  C. Woo,et al.  Production bias and cluster annihilation: Why necessary? , 1994 .

[24]  R. Stoller,et al.  A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution , 1995 .

[25]  B. Wirth,et al.  Modeling of irradiation hardening of iron after low-dose and low-temperature neutron irradiation , 2014 .

[26]  B. Wirth,et al.  Grouping techniques for large-scale cluster dynamics simulations of reaction diffusion processes , 2017 .

[27]  M. Kiritani,et al.  Analysis of the Clustering Process of Supersaturated Lattice Vacancies , 1973 .

[28]  D. Morgan,et al.  Integrated modeling of second phase precipitation in cold-worked 316 stainless steels under irradiation , 2017, 1705.10654.

[29]  J. Katz,et al.  Nucleation of Voids in Materials Supersaturated with Vacancies and Interstitials , 1971 .

[30]  Adrian Barbu,et al.  Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels , 2016 .

[31]  G. Adjanor,et al.  Efficient simulation of kinetics of radiation induced defects: A cluster dynamics approach , 2014 .

[32]  B. Wirth,et al.  A phase-cut method for multi-species kinetics: Sample application to nanoscale defect cluster evolution in alpha iron following helium ion implantation , 2013 .

[33]  Laurent Capolungo,et al.  Spatially resolved stochastic cluster dynamics for radiation damage evolution in nanostructured metals , 2013 .

[34]  Vasily V. Bulatov,et al.  Stochastic cluster dynamics method for simulations of multispecies irradiation damage accumulation , 2011 .

[35]  H. Trinkaus,et al.  1D to 3D diffusion-reaction kinetics of defects in crystals , 2002 .

[36]  Stanislav I Golubov,et al.  One-dimensional atomic transport by clusters of self-interstitial atoms in iron and copper , 2003 .

[37]  H. Wiedersich,et al.  A theory of radiation-induced segregation in concentrated alloys☆ , 1979 .

[38]  K. M. Miller Dislocation bias and point-defect relaxation volumes , 1979 .

[39]  A. Foreman,et al.  Production bias and void swelling in the transient regime under cascade damage conditions , 1992 .

[40]  J. Vetrano,et al.  The collapse of defect cascades to dislocation loops , 1986 .

[41]  M. Speight,et al.  Steady-state irradiation creep , 1974 .

[42]  F. Willaime,et al.  Resistivity recovery simulations of electron-irradiated iron: Kinetic Monte Carlo versus cluster dynamics , 2006 .

[43]  Masahiro Koiwa,et al.  On the Validity of the Grouping Method —Comments on "Analysis of the Clustering Process of Supersaturated Lattice Vacancies"— , 1974 .

[44]  R. Stoller Point defect survival and clustering fractions obtained from molecular dynamics simulations of high energy cascades , 1996 .

[45]  B. Wirth,et al.  Cluster dynamics models of irradiation damage accumulation in ferritic iron. II. Effects of reaction dimensionality , 2015 .

[46]  C. Domain,et al.  Comparison between three complementary approaches to simulate ‘ large ’ fluence irradiation: application to electron irradiation of thin foils , 2005 .

[47]  Lorenzo Malerba,et al.  Modeling the long-term evolution of the primary damage in ferritic alloys using coarse-grained methods , 2010 .

[48]  Brian D. Wirth,et al.  Primary damage formation in bcc iron , 1997 .

[49]  W. G. Wolfer,et al.  Vacancy cluster evolution and swelling in irradiated 316 stainless steel , 2004 .

[50]  L. Capolungo,et al.  Displacement rate and temperature equivalence in stochastic cluster dynamics simulations of irradiated pure α-Fe , 2016 .

[51]  M. Ashkin,et al.  Diffusion of vacancies and interstitials to edge dislocations , 1976 .

[52]  Janne Wallenius,et al.  Displacement cascades in Fe–Cr: A molecular dynamics study , 2006 .

[53]  N. Soneda,et al.  Defect production, annealing kinetics and damage evolution in α-Fe: An atomic-scale computer simulation , 1998 .

[54]  A. Brailsford,et al.  Point defect sink strengths and void-swelling , 1976 .

[55]  Lorenzo Malerba,et al.  On the migration and trapping of single self-interstitial atoms in dilute and concentrated Fe–Cr alloys: Atomistic study and comparison with resistivity recovery experiments , 2008 .

[56]  B. Wirth,et al.  Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies , 2015 .

[57]  A. S. Abyzov,et al.  Numerical evaluation of the dislocation loop bias , 2005 .

[58]  N. H. Packan,et al.  Correlation of neutron and heavy-ion damage: I. The influence of dose rate and injected helium on swelling in pure nickel , 1978 .

[59]  M. Surh,et al.  Master equation and Fokker–Planck methods for void nucleation and growth in irradiation swelling , 2004 .

[60]  Alain Barbu,et al.  Cluster Dynamics modelling of irradiation growth of zirconium single crystals , 2009 .

[61]  R. Bullough,et al.  A theoretical evaluation of dual-beam irradiation experiments , 1978 .

[62]  S. Zinkle,et al.  I. Energy calculations for pure metals , 1987 .

[63]  R. Stoller,et al.  Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation , 2015 .

[64]  F. Christien,et al.  Modelling of copper precipitation in iron during thermal aging and irradiation , 2004 .

[65]  C. Domain,et al.  Mean field rate theory and object kinetic Monte Carlo: A comparison of kinetic models , 2008 .

[66]  T. D. Rubia,et al.  Molecular dynamics computer simulations of displacement cascades in metals , 1994 .

[67]  D. Maroudas,et al.  Modeling Helium Segregation to the Surfaces of Plasma-Exposed Tungsten as a Function of Temperature and Surface Orientation , 2017 .

[68]  F. Maury,et al.  Experimental study and modelling of copper precipitation under electron irradiation in dilute FeCu binary alloys , 1997 .

[69]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[70]  T. Faney,et al.  Spatially dependent cluster dynamics modeling of microstructure evolution in low energy helium irradiated tungsten , 2014 .

[71]  A. Barbu,et al.  Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations , 2002 .

[72]  S. Golubov,et al.  The effects of one-dimensional glide on the reaction kinetics of interstitial clusters , 2000 .

[73]  T. A. Lewis,et al.  Copper precipitation in Fe-Cu alloys under electron and neutron irradiation , 2004 .

[74]  T. Jourdan Influence of dislocation and dislocation loop biases on microstructures simulated by rate equation cluster dynamics , 2015 .

[75]  B. Wirth,et al.  Defect microstructural equivalence in molybdenum under different irradiation conditions at low temperatures and low doses , 2016 .

[76]  L. Malerba,et al.  Diffusivity of solute atoms, matrix atoms and interstitial atoms in Fe–Cr alloys: a molecular dynamics study , 2004 .

[77]  C. Woo The sink strength of a dislocation loop in the effective medium approximation , 1981 .

[78]  E. Clouet,et al.  Elastic dipoles of point defects from atomistic simulations , 2017 .

[79]  V. Borodin Rate theory for one-dimensional diffusion , 1998 .

[80]  R. Stoller,et al.  Cascade annealing simulations of bcc iron using object kinetic Monte Carlo , 2012 .

[81]  R. J. White,et al.  The preferential trapping of interstitials at dislocations , 1975 .

[82]  Arthur F. Voter,et al.  The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency , 2015, Scientific Reports.

[83]  C. Woo Theory of irradiation deformation in non-cubic metals: Effects of anisotropic diffusion , 1988 .

[84]  H. Rauh,et al.  On the Diffusion Process of Point Defects in the Stress Field of Edge Dislocations , 1978, April 16.

[85]  L. Capolungo,et al.  Simulating radiation damage accumulation in α-Fe: A spatially resolved stochastic cluster dynamics approach , 2015 .

[86]  F. Christien,et al.  Effect of self-interstitial diffusion anisotropy in electron-irradiated zirconium: A cluster dynamics modeling , 2005 .

[87]  R. Stoller,et al.  Analytical solutions for helium bubble and critical radius parameters using a hard sphere equation of state , 1985 .

[88]  B. Wirth,et al.  Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals , 2012 .

[89]  L. Capolungo,et al.  Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated α-Fe , 2015 .

[90]  U. Gösele,et al.  Steady-state diffusion of point defects to dislocation loops , 1977 .

[91]  E. Martínez,et al.  Identification of dominant damage accumulation processes at grain boundaries during irradiation in nanocrystalline α-Fe: A statistical study , 2016 .

[92]  B. Wirth,et al.  Ballistic effects on the copper precipitation and re-dissolution kinetics in an ion irradiated and thermally annealed Fe-Cu alloy. , 2016, The Journal of chemical physics.

[93]  E. Clouet,et al.  Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics , 2005, cond-mat/0503485.

[94]  H. Trinkaus,et al.  Glide of interstitial loops produced under cascade damage conditions: Possible effects on void formation , 1992 .

[95]  M. Finnis,et al.  Irradiation creep models — an overview , 1988 .

[96]  Thomas Jourdan,et al.  Influence of cluster mobility on Cu precipitation in α-Fe: A cluster dynamics modeling , 2010 .

[97]  D. Bacon,et al.  A molecular dynamics study of displacement cascades in α-iron , 1993 .

[98]  W. Wolfer The Dislocation Bias , 2007 .

[99]  Louis K. Mansur,et al.  Mechanisms of helium interaction with radiation effects in metals and alloys: A review , 1983 .

[100]  C. Tomé,et al.  Irradiation creep by stress-induced preferential attraction due to anisotropic diffusion (SIPA-AD) , 1982 .

[101]  Steven J. Zinkle,et al.  Kinetics of coarsening of helium bubbles during implantation and post-implantation annealing , 2007 .

[102]  M. Speight,et al.  Point defect behaviour in irradiated materials , 1975 .

[103]  L. Mansur Correlation of neutron and heavy-ion damage: II. The predicted temperature shift if swelling with changes in radiation dose rate☆ , 1978 .

[104]  B. Wirth,et al.  Cluster dynamics models of irradiation damage accumulation in ferritic iron. I. Trap mediated interstitial cluster diffusion , 2015 .

[105]  M. Cherkaoui,et al.  A novel method for computing effective diffusivity: Application to helium implanted α-Fe thin films , 2014 .

[106]  F. Bruneval,et al.  Point defect modeling in materials: coupling ab initio and elasticity approaches , 2013, 1310.5799.

[107]  A. Brailsford,et al.  The theory of sink strengths , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[108]  E. Clouet,et al.  Using cluster dynamics to model electrical resistivity measurements in precipitating AlSc alloys , 2006, cond-mat/0611524.

[109]  D. Maroudas,et al.  Energetics of formation and migration of self-interstitials and self-interstitial clusters in α-iron , 1997 .

[110]  T. Okita,et al.  A critical test of the classical rate theory for void swelling , 2004 .

[111]  Wilhelm G. Wolfer,et al.  Void nucleation, growth, and coalescence in irradiated metals , 2008, 0803.3829.

[112]  K. C. Russell Phase stability under irradiation , 1984 .