Two-way classical communication remarkably improves local distinguishability

We analyze the difference in the local distinguishability among the following three restrictions: (i) local operations and only one-way classical communications (one-way LOCC) are permitted; (ii) local operations and two-way classical communications (two-way LOCC) are permitted; and (iii) all separable operations are permitted. We obtain two main results concerning the discrimination between a given bipartite pure state and the completely mixed state with the condition that the given state should be detected perfectly. As the first result, we derive the optimal discrimination protocol for a bipartite pure state in cases (i) and (iii). As the second result, by constructing a concrete two-way local discrimination protocol, it is proven that case (ii) is much better than case (i), i.e. two-way classical communication remarkably improves the local distinguishability in comparison with one-way classical communication at least for a low-dimensional bipartite pure state.

[1]  H. Lo,et al.  Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.

[2]  M. Hayashi,et al.  Finding a maximally correlated state: Simultaneous Schmidt decomposition of bipartite pure states , 2004, quant-ph/0405107.

[3]  James A. Bucklew,et al.  Large Deviation Techniques in Decision, Simulation, and Estimation , 1990 .

[4]  D. Markham,et al.  Optimal local discrimination of two multipartite pure states , 2001, quant-ph/0102073.

[5]  Vedral,et al.  Local distinguishability of multipartite orthogonal quantum states , 2000, Physical review letters.

[6]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[7]  M. B. Plenio,et al.  Entanglement of multiparty stabilizer, symmetric, and antisymmetric states , 2007, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[8]  W. Hoeffding Asymptotically Optimal Tests for Multinomial Distributions , 1965 .

[9]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[10]  Scott M. Cohen Local distinguishability with preservation of entanglement , 2007 .

[11]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[12]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[13]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  H. Fan Distinguishability and indistinguishability by local operations and classical communication. , 2004, Physical review letters.

[15]  M. Murao,et al.  Erratum: Entanglement of multiparty-stabilizer, symmetric, and antisymmetric states (vol 77, 012104, 2008) , 2009 .

[16]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[18]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[19]  Umesh V. Vazirani,et al.  Quantum Mechanical Algorithms for the Nonabelian Hidden Subgroup Problem , 2004, Comb..

[20]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[21]  M. Horodecki,et al.  The Uniqueness Theorem for Entanglement Measures , 2001, quant-ph/0105017.

[22]  Debasis Sarkar,et al.  Distinguishability of maximally entangled states , 2004 .

[23]  H. Nagaoka The Converse Part of The Theorem for Quantum Hoeffding Bound , 2006, quant-ph/0611289.

[24]  林 正人 Quantum information : an introduction , 2006 .

[25]  Michael Nathanson Distinguishing bipartitite orthogonal states using LOCC: Best and worst cases , 2005 .

[26]  L. Vaidman,et al.  Nonlocal variables with product-state eigenstates , 2001, quant-ph/0103084.

[27]  M. Murao,et al.  Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. , 2005, Physical review letters.

[28]  Masahito Hayashi Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding , 2006, quant-ph/0611013.

[29]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[30]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[31]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[32]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[33]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[34]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[35]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[36]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[37]  M. Nussbaum,et al.  A lower bound of Chernoff type for symmetric quantum hypothesis testing , 2006 .

[38]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[39]  Tomohiro Ogawa,et al.  Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing , 2007, IEEE Transactions on Information Theory.

[40]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .