Nonlocality of symmetric states and its applications in quantum information. (Non-localité des états symétriques et ses applications en informatique quantique)

This thesis is about the nonlocal properties of permuation symmetric states and the potential usefulness of such properties in quantum information processing. The nonlocality of almost all symmetric states, except Dicke states is shown by constructing an $n$-party Hardy paradox. With the help of the Majorana representation, suitable measurement settings can be chosen for these symmetric states which satisfy the paradox. An extended CH inequality can be derived from the probabilistic conditions of the paradox. The inequality is shown to be violated by all symmetric states. The nonlocality properties and entanglement properties of symmetric states are also discussed and compared, natbly with respect to persistency and monogamy. It is shown that te degeneracy of some symmetric states is linked to the persistency, which provides a way to use device independent tests to separte nonlocality classes. It is also shown that the inequalities used to show the nonlocality of all symmetric states are not strictly monogamous.A new inequality for Dicke states is shown to be monogamous when the number of parties goes to infinity. But all these inequalites can not detect genuine nonlocality. Applications of nonlocality to communication complexity and Bayesian game theory are also discussed.

[1]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[2]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[3]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[4]  F. Verstraete,et al.  General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.

[5]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[6]  Oliver Rudolph Further Results on the Cross Norm Criterion for Separability , 2005, Quantum Inf. Process..

[7]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[8]  V. Scarani,et al.  Device-independent quantum key distribution secure against collective attacks , 2009, 0903.4460.

[9]  Peter Szekeres A Course in Modern Mathematical Physics: Groups , 2004 .

[10]  M. P. Seevinck,et al.  Monogamy of correlations versus monogamy of entanglement , 2009, Quantum Inf. Process..

[11]  B. Toner Monogamy of non-local quantum correlations , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Roger B. Myerson,et al.  Game theory - Analysis of Conflict , 1991 .

[13]  Sudha,et al.  Monogamy of quantum correlations in three-qubit pure states , 2011, 1110.3026.

[14]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[15]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.

[16]  V. Vedral,et al.  Extreme nonlocality with one photon , 2009, 0911.0770.

[17]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[18]  Svetlichny,et al.  Distinguishing three-body from two-body nonseparability by a Bell-type inequality. , 1987, Physical review. D, Particles and fields.

[19]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[20]  H. Weinfurter,et al.  Operational multipartite entanglement classes for symmetric photonic qubit states , 2009, 0911.5112.

[21]  R. Werner,et al.  Counterexample to an additivity conjecture for output purity of quantum channels , 2002, quant-ph/0203003.

[22]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[23]  M. Freedman,et al.  Nonlocality & Communication Complexity , 2004 .

[24]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[25]  M. Wolf,et al.  All-multipartite Bell-correlation inequalities for two dichotomic observables per site , 2001, quant-ph/0102024.

[26]  Feihu Xu,et al.  Experimental demonstration of phase-remapping attack in a practical quantum key distribution system , 2010, 1005.2376.

[27]  M. Pawłowski,et al.  Monogamy of Bell's inequality violations in nonsignaling theories. , 2008, Physical Review Letters.

[28]  M. Mišík,et al.  Oxford University Press , 1968, PMLA/Publications of the Modern Language Association of America.

[29]  R. Penrose,et al.  Two-spinor calculus and relativistic fields , 1984 .

[30]  S. Wehner Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities , 2005, quant-ph/0510076.

[31]  J. C. Retamal,et al.  Deterministic generation of arbitrary symmetric states and entanglement classes , 2012, 1211.0404.

[32]  Daniël Wedema Games And Information An Introduction To Game Theory 3rd Edition , 2011 .

[33]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[34]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[35]  L. Hardy,et al.  Nonlocality for two particles without inequalities for almost all entangled states. , 1993, Physical review letters.

[36]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[37]  Y. Kosmann-Schwarzbach The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century , 2010 .

[38]  P. Ribeiro,et al.  Entanglement in the symmetric sector of n qubits. , 2011, Physical review letters.

[39]  R. Fenn The Geometry of Complex Numbers , 2001 .

[40]  J. Vidal,et al.  Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  D. Markham,et al.  Graph states for quantum secret sharing , 2008, 0808.1532.

[42]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[43]  P. Pearle Hidden-Variable Example Based upon Data Rejection , 1970 .

[44]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[45]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[46]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[47]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[48]  P. Leboeuf Phase space approach to quantum dynamics , 1991 .

[49]  R. Penrose,et al.  On bell non-locality without probabilities: More curious geometry , 1993 .

[50]  A. Razborov Communication Complexity , 2011 .

[51]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[52]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[53]  D. Markham,et al.  Entanglement and symmetry in permutation-symmetric states , 2010, 1001.0343.

[54]  Hans J. Briegel,et al.  Two-setting Bell inequalities for graph states , 2005, quant-ph/0510007.

[55]  M. Anthony,et al.  Advanced linear algebra , 2006 .

[56]  M. Żukowski,et al.  Do all pure entangled states violate Bell's inequalities for correlation functions? , 2001, Physical review letters.