Strict lower bounds with separation of sources of error in non‐overlapping domain decomposition methods

Summary This article deals with the computation of guaranteed lower bounds of the error in the framework of finite element and domain decomposition methods. In addition to a fully parallel computation, the proposed lower bounds separate the algebraic error (due to the use of a domain decomposition iterative solver) from the discretization error (due to the finite element), which enables the steering of the iterative solver by the discretization error. These lower bounds are also used to improve the goal-oriented error estimation in a substructured context. Assessments on 2D static linear mechanic problems illustrate the relevance of the separation of sources of error and the lower bounds' independence from the substructuring. We also steer the iterative solver by an objective of precision on a quantity of interest. This strategy consists in a sequence of solvings and takes advantage of adaptive remeshing and recycling of search directions. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  T. Strouboulis,et al.  A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor , 2000 .

[2]  Pedro Díez,et al.  Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates , 2003 .

[3]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[4]  A. Huerta,et al.  A unified approach to remeshing strategies for finite element h-adaptivity , 1999 .

[5]  S. Ohnimus,et al.  Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .

[6]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[7]  Pedro Díez,et al.  Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method , 2009 .

[8]  L. Gallimard A constitutive relation error estimator based on traction‐free recovery of the equilibrated stress , 2009 .

[9]  Pedro Díez,et al.  Subdomain-based flux-free a posteriori error estimators , 2006 .

[10]  Pierre Ladevèze,et al.  Mastering Calculations in Linear and Nonlinear Mechanics , 2004 .

[11]  Pierre Gosselet,et al.  Total and selective reuse of Krylov subspaces for the resolution of sequences of nonlinear structural problems , 2013, ArXiv.

[12]  Patrice Coorevits,et al.  Adaptive mesh refinement for the control of cost and quality in finite element analysis , 2005 .

[13]  Charbel Farhat,et al.  The Dual Schur Complement Method with Well-Posed Local Neumann Problems: Regularization with a Perturbed Lagrangian Formulation , 1993, SIAM J. Sci. Comput..

[14]  Ludovic Chamoin,et al.  On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples , 2011, 1704.06680.

[15]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[16]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[17]  Pierre Ladevèze,et al.  Strict upper error bounds on computed outputs of interest in computational structural mechanics , 2008 .

[18]  Pierre Ladevèze,et al.  Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems , 2006 .

[19]  Pierre Gosselet,et al.  Fast estimation of discretization error for FE problems solved by domain decomposition , 2010 .

[20]  Pedro Díez,et al.  Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error , 2007 .

[21]  Y. Saad Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..

[22]  C. Farhat,et al.  The two-level FETI method for static and dynamic plate problems Part I: An optimal iterative solver for biharmonic systems , 1998 .

[23]  P. Tallec Domain decomposition methods in computational mechanics , 1994 .

[24]  P. Gosselet,et al.  Non-overlapping domain decomposition methods in structural mechanics , 2006, 1208.4209.

[25]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[26]  Christian Rey,et al.  A Rayleigh–Ritz preconditioner for the iterative solution to large scale nonlinear problems , 1998, Numerical Algorithms.

[27]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[28]  Pierre Gosselet,et al.  A strict error bound with separated contributions of the discretization and of the iterative solver in non-overlapping domain decomposition methods , 2014 .

[29]  Pierre Gosselet,et al.  Strict bounding of quantities of interest in computations based on domain decomposition , 2015, ArXiv.

[30]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[31]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[32]  Christian Rey,et al.  Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems , 2004, Numerical Algorithms.

[33]  Pierre Gosselet,et al.  Study of the strong prolongation equation for the construction of statically admissible stress fields: Implementation and optimization , 2013, 1309.4872.

[34]  Pedro Díez,et al.  Guaranteed energy error bounds for the Poisson equation using a flux‐free approach: Solving the local problems in subdomains , 2009 .