Visualizing the Carbon Binder Phase of Battery Electrodes in Three Dimensions

This study presents a technique to directly characterize the carbon and binder domain (CBD) in lithium-ion (Li-ion) battery electrodes in three dimensions and use it to determine the effective transport properties of a LiNi0.33Mn0.33Co0.33O2 (NMC) electrode. X-ray nanocomputed tomography (nano-CT) is used to image an electrode composed solely of carbon and binder, whereas focused ion beam–scanning electron microscopy is used to analyze cross-sections of a NMC electrode to gain morphological information regarding the electrode and CBD porosity. Combining the information gathered from these techniques reduces the uncertainty inherent in segmenting the nano-CT CBD data set and enables effective diffusivity of its porous network to be determined. X-ray  microcomputed tomography (micro-CT) is then used to collect a NMC data set that is subsequently segmented into three phases, comprised of active material, pore, and CBD. The effective diffusivity calculated for the nano-CT data set is incorporated for the CBD ...

[1]  W. M. Hess,et al.  Microstructure, Morphology and General Physical Properties , 2018 .

[2]  D. Brett,et al.  A Lab-Based Multi-Length Scale Approach to Characterize Lithium-Ion Cathode Materials , 2017 .

[3]  N. R. Backeberg,et al.  Laser‐preparation of geometrically optimised samples for X‐ray nano‐CT , 2017, Journal of microscopy.

[4]  Nigel P. Brandon,et al.  TauFactor: An open-source application for calculating tortuosity factors from tomographic data , 2016, SoftwareX.

[5]  Paul R. Shearing,et al.  Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography , 2016, Scientific Reports.

[6]  M. Winter,et al.  Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode , 2016, Scientific Reports.

[7]  Oluwadamilola O. Taiwo,et al.  Comparison of three‐dimensional analysis and stereological techniques for quantifying lithium‐ion battery electrode microstructures , 2016, Journal of microscopy.

[8]  D. Wheeler,et al.  Morphology of nanoporous carbon-binder domains in Li-ion batteries—A FIB-SEM study , 2015 .

[9]  Alexander M. Korsunsky,et al.  Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography , 2015 .

[10]  R. Zengerle,et al.  Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography , 2015, Scientific Reports.

[11]  Nigel P. Brandon,et al.  Multi Length-Scale Quantification of Hierarchical Microstructure in Designed Microtubular SOFC Electrodes , 2015 .

[12]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[13]  James B. Robinson,et al.  In-operando high-speed tomography of lithium-ion batteries during thermal runaway , 2015, Nature Communications.

[14]  D. Wheeler,et al.  Three‐Phase Multiscale Modeling of a LiCoO2 Cathode: Combining the Advantages of FIB–SEM Imaging and X‐Ray Tomography , 2015 .

[15]  Yangping Sheng,et al.  Effect of Calendering on Electrode Wettability in Lithium-Ion Batteries , 2014, Front. Energy Res..

[16]  D. Wheeler,et al.  A Combination of X‐Ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO2 Li‐Ion Battery Cathodes , 2014 .

[17]  S. Stock,et al.  X-ray micro-computed tomography and tortuosity calculations of percolating pore networks , 2014 .

[18]  Nigel P. Brandon,et al.  The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes , 2014 .

[19]  Nigel P. Brandon,et al.  Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries , 2014 .

[20]  Martin Ebner,et al.  Validity of the Bruggeman relation for porous electrodes , 2013 .

[21]  F. Marone,et al.  X‐Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes , 2013 .

[22]  Y. K. Chen-Wiegart,et al.  3D analysis of a LiCoO2–Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using x-ray nano-tomography , 2013 .

[23]  D. Wheeler,et al.  FIB/SEM-based calculation of tortuosity in a porous LiCoO2 cathode for a Li-ion battery , 2013 .

[24]  Andreas Stein,et al.  Porous Electrode Materials for Lithium‐Ion Batteries – How to Prepare Them and What Makes Them Special , 2012 .

[25]  Sergei V. Kalinin,et al.  Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films , 2011 .

[26]  Di Chen,et al.  In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid , 2011 .

[27]  E. Landis,et al.  X-ray microtomography , 2010 .

[28]  Stephen Jesse,et al.  Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale. , 2010, ACS nano.

[29]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[30]  Nigel P. Brandon,et al.  Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery , 2010 .

[31]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[32]  Lorenz Holzer,et al.  Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion , 2008 .

[33]  P. Withers X-ray nanotomography , 2007 .

[34]  Ann Marie Sastry,et al.  Selection of Conductive Additives in Li-Ion Battery Cathodes A Numerical Study , 2007 .

[35]  Toshiyuki Momma,et al.  In situ observation of lithium deposition processes in solid polymer and gel electrolytes , 1997 .

[36]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[37]  Masahiro Ichimura,et al.  Lithium electrode cycleability and morphology dependence on current density , 1993 .

[38]  L. Feldkamp,et al.  Practical cone-beam algorithm , 1984 .

[39]  Roland Zengerle,et al.  Three-dimensional electrochemical Li-ion battery modelling featuring a focused ion-beam/scanning electron microscopy based three-phase reconstruction of a LiCoO2 cathode , 2014 .

[40]  B. Yan,et al.  Three Dimensional Simulation of Galvanostatic Discharge of LiCoO2 Cathode Based on X-ray Nano-CT Images , 2012 .

[41]  Nigel P. Brandon,et al.  Multi Length Scale Microstructural Investigations of a Commercially Available Li-Ion Battery Electrode , 2012 .

[42]  Moses Ender,et al.  Quantitative Characterization of LiFePO4 Cathodes Reconstructed by FIB/SEM Tomography , 2012 .

[43]  Nigel P. Brandon,et al.  Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode , 2011 .

[44]  S. Trussler,et al.  A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers , 2011 .