Mammalian 5′-Capped MicroRNA Precursors that Generate a Single MicroRNA

MicroRNAs (miRNAs) are short RNA gene regulators typically produced from primary transcripts that are cleaved by the nuclear microprocessor complex, with the resulting precursor miRNA hairpins exported by exportin 5 and processed by cytoplasmic Dicer to yield two (5p and 3p) miRNAs. Here, we document microprocessor-independent 7-methylguanosine (m(7)G)-capped pre-miRNAs, whose 5' ends coincide with transcription start sites and 3' ends are most likely generated by transcription termination. By establishing a small RNA Cap-seq method that employs the cap-binding protein eIF4E, we identified a group of murine m(7)G-capped pre-miRNAs genome wide. The m(7)G-capped pre-miRNAs are exported via the PHAX-exportin 1 pathway. After Dicer cleavage, only the 3p-miRNA is efficiently loaded onto Argonaute to form a functional microRNP. This unusual miRNA biogenesis pathway, which differs in pre-miRNA synthesis, nuclear-cytoplasmic transport, and guide strand selection, enables the development of shRNA expression constructs that produce a single 3p-siRNA.

[1]  N. Proudfoot,et al.  AT-rich sequence elements promote nascent transcript cleavage leading to RNA polymerase II termination , 2012, Nucleic acids research.

[2]  J. Steitz,et al.  Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production , 2008, The Journal of cell biology.

[3]  Arjun Bhutkar,et al.  In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. , 2012, RNA.

[4]  Kenneth S. Kosik,et al.  Deep annotation of mouse iso-miR and iso-moR variation , 2012, Nucleic acids research.

[5]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[6]  C. Nusbaum,et al.  Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. , 2010, Genes & development.

[7]  C. Dargemont,et al.  Nuclear export of RNA , 2004, Biology of the cell.

[8]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[9]  I. Bozzoni,et al.  A new vector, based on the PolII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. , 2004, Molecular therapy : the journal of the American Society of Gene Therapy.

[10]  I. Bozzoni,et al.  Primary microRNA transcripts are processed co-transcriptionally , 2008, Nature Structural &Molecular Biology.

[11]  David W. Taylor,et al.  A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity , 2010, Science.

[12]  J. Steitz,et al.  Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling , 2006, The Journal of cell biology.

[13]  M. Ohno,et al.  hnRNP C Tetramer Measures RNA Length to Classify RNA Polymerase II Transcripts for Export , 2012, Science.

[14]  G. Daley,et al.  Human embryonic stem cells , 2004, Bone Marrow Transplantation.

[15]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[16]  T. Cullen,et al.  Global existence of solutions for the relativistic Boltzmann equation on the flat Robertson-Walker space-time for arbitrarily large intial data , 2005, gr-qc/0507035.

[17]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2013 , 2012, Nucleic Acids Res..

[18]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[19]  A. Weiner,et al.  E Pluribus Unum: 3' end formation of polyadenylated mRNAs, histone mRNAs, and U snRNAs. , 2005, Molecular cell.

[20]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[21]  Ryan D. Morin,et al.  Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. , 2008, Genome research.

[22]  Robert Blelloch,et al.  Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. , 2008, Genes & development.

[23]  D. Haussecker,et al.  Capped small RNAs and MOV10 in Human Hepatitis Delta Virus replication , 2008, Nature Structural &Molecular Biology.

[24]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[25]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[26]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[27]  E. Lai,et al.  MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. , 2010, Molecular cell.

[28]  S. Robson,et al.  Human RNA Methyltransferase BCDIN3D Regulates MicroRNA Processing , 2012, Cell.

[29]  Nahum Sonenberg,et al.  Cap and cap‐binding proteins in the control of gene expression , 2011, Wiley interdisciplinary reviews. RNA.

[30]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[31]  V. Ambros,et al.  Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. , 2008, Genome research.

[32]  Leighton J. Core,et al.  Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. , 2011, Genes & development.

[33]  Satoshi Shibata,et al.  A High-Resolution Structure of the Pre-microRNA Nuclear Export Machinery , 2009, Science.

[34]  Michael C. Ostrowski,et al.  Reprogramming of the Tumor Microenvironment by Stromal Pten-regulated miR-320 , 2011, Nature Cell Biology.

[35]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[36]  C. Mello,et al.  CapSeq and CIP-TAP Identify Pol II Start Sites and Reveal Capped Small RNAs as C. elegans piRNA Precursors , 2012, Cell.

[37]  J. Steitz,et al.  A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts , 2005, The EMBO journal.

[38]  G. Hannon,et al.  A dicer-independent miRNA biogenesis pathway that requires Ago catalysis , 2010, Nature.

[39]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[40]  Y. Hayashizaki,et al.  A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. , 2010, Genome research.

[41]  David W. Taylor,et al.  An RNA Degradation Machine Sculpted by Ro Autoantigen and Noncoding RNA , 2013, Cell.

[42]  C. Hagedorn,et al.  Purifying mRNAs with a high-affinity eIF4E mutant identifies the short 3′ poly(A) end phenotype , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Hyeshik Chang,et al.  Dicer recognizes the 5′ end of RNA for efficient and accurate processing , 2011, Nature.

[44]  Cyrille Girard,et al.  Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. , 2006, Molecular biology of the cell.

[45]  T. Jensen,et al.  The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L , 2010, The EMBO journal.

[46]  J. Steitz,et al.  A primate herpesvirus uses the integrator complex to generate viral microRNAs. , 2011, Molecular cell.

[47]  I. MacRae,et al.  The Crystal Structure of Human Argonaute2 , 2012, Science.

[48]  N. Rajewsky,et al.  A human snoRNA with microRNA-like functions. , 2008, Molecular cell.

[49]  M. Peppelenbosch,et al.  A dynamic perspective of RNAi library development. , 2012, Trends in biotechnology.

[50]  E. Lai,et al.  Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. , 2011, Molecular cell.

[51]  G. Hannon,et al.  The Structure of Human Argonaute-2 in Complex with miR-20a , 2012, Cell.

[52]  A. Gingras,et al.  Cocrystal Structure of the Messenger RNA 5′ Cap-Binding Protein (eIF4E) Bound to 7-methyl-GDP , 1997, Cell.

[53]  E. Lai,et al.  Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis , 2010, Proceedings of the National Academy of Sciences.

[54]  J. Nelson,et al.  CSR1 induces cell death through inactivation of CPSF3 , 2008, Oncogene.

[55]  A. Shilatifard,et al.  The Super Elongation Complex Family of RNA Polymerase II Elongation Factors: Gene Target Specificity and Transcriptional Output , 2012, Molecular and Cellular Biology.

[56]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[57]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[58]  Mohamed-Ali Hakimi,et al.  Integrator, a Multiprotein Mediator of Small Nuclear RNA Processing, Associates with the C-Terminal Repeat of RNA Polymerase II , 2005, Cell.

[59]  Mark Gerstein,et al.  Bioinformatics Applications Note Gene Expression Rseqtools: a Modular Framework to Analyze Rna-seq Data Using Compact, Anonymized Data Summaries , 2022 .

[60]  B. Cullen,et al.  A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral MicroRNAs. , 2010, Molecular cell.

[61]  Angela Bachi,et al.  PHAX, a Mediator of U snRNA Nuclear Export Whose Activity Is Regulated by Phosphorylation , 2000, Cell.

[62]  Thomas A Neubert,et al.  Canonical and alternate functions of the microRNA biogenesis machinery. , 2010, Genes & development.

[63]  Yue Zhang,et al.  The Loop Position of shRNAs and Pre-miRNAs Is Critical for the Accuracy of Dicer Processing In Vivo , 2012, Cell.

[64]  A. Malhotra,et al.  A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). , 2009, Genes & development.

[65]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[66]  Martin S. Taylor,et al.  Genome-wide analysis of mammalian promoter architecture and evolution , 2006, Nature Genetics.

[67]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[68]  Doron Betel,et al.  Widespread regulatory activity of vertebrate microRNA* species. , 2011, RNA.

[69]  A. Riggs,et al.  CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs , 2009, Proceedings of the National Academy of Sciences.

[70]  Masaru Tomita,et al.  Global microRNA elevation by inducible Exportin 5 regulates cell cycle entry. , 2013, RNA.

[71]  M. O'Donohue,et al.  Gradual processing of the ITS1 from the nucleolus to the cytoplasm during synthesis of the human 18S rRNA , 2013, Nucleic acids research.

[72]  E. Lai,et al.  The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila , 2010, The EMBO journal.

[73]  P. Sætrom,et al.  MicroRNA-directed transcriptional gene silencing in mammalian cells , 2008, Proceedings of the National Academy of Sciences.

[74]  L. Tong,et al.  Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease , 2006, Nature.

[75]  Peifeng Li,et al.  miR-484 regulates mitochondrial network through targeting Fis1 , 2012, Nature Communications.