Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland

The Sea‐level Response to Ice Sheet Evolution (SeaRISE) effort explores the sensitivity of the current generation of ice sheet models to external forcing to gain insight into the potential future contribution to sea level from the Greenland and Antarctic ice sheets. All participating models simulated the ice sheet response to three types of external forcings: a change in oceanic condition, a warmer atmospheric environment, and enhanced basal lubrication. Here an analysis of the spatial response of the Greenland ice sheet is presented, and the impact of model physics and spin‐up on the projections is explored. Although the modeled responses are not always homogeneous, consistent spatial trends emerge from the ensemble analysis, indicating distinct vulnerabilities of the Greenland ice sheet. There are clear response patterns associated with each forcing, and a similar mass loss at the full ice sheet scale will result in different mass losses at the regional scale, as well as distinct thickness changes over the ice sheet. All forcings lead to an increased mass loss for the coming centuries, with increased basal lubrication and warmer ocean conditions affecting mainly outlet glaciers, while the impacts of atmospheric forcings affect the whole ice sheet.

[1]  R. Alley,et al.  Dynamic (in)stability of Thwaites Glacier, West Antarctica , 2013 .

[2]  Eric Rignot,et al.  Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica , 2013 .

[3]  Gaël Durand,et al.  Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison , 2013, Journal of Glaciology.

[4]  William H. Lipscomb,et al.  Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project) , 2012, Journal of Glaciology.

[5]  Daniel F. Martin,et al.  Adaptive mesh, finite volume modeling of marine ice sheets , 2013, J. Comput. Phys..

[6]  O. Gagliardini,et al.  The stability of grounding lines on retrograde slopes , 2012 .

[7]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[8]  Ralf Greve,et al.  Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates , 2012, Annals of Glaciology.

[9]  Phillip A. Chen,et al.  On the influence of Greenland outlet glacier bed topography on results from dynamic ice-sheet models , 2012, Annals of Glaciology.

[10]  David Pollard,et al.  Description of a hybrid ice sheet-shelf model, and application to Antarctica , 2012 .

[11]  H. Zwally,et al.  Dynamic inland propagation of thinning due to ice loss at the margins of the Greenland ice sheet , 2012, Journal of Glaciology.

[12]  J. Paden,et al.  Sensitivity Analysis of Pine Island Glacier ice flow using ISSM and DAKOTA , 2012 .

[13]  Ian M. Howat,et al.  Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis , 2012 .

[14]  F. Saito,et al.  The Cryosphere Results of the Marine Ice Sheet Model Intercomparison Project , 2012 .

[15]  Ian Joughin,et al.  Modeling Ice-Sheet Flow , 2012, Science.

[16]  D. Vaughan,et al.  Antarctic ice-sheet loss driven by basal melting of ice shelves , 2012, Nature.

[17]  Joeri Rogelj,et al.  Global warming under old and new scenarios using IPCC climate sensitivity range estimates , 2012 .

[18]  Eric Rignot,et al.  Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM) , 2012 .

[19]  Mariana Vertenstein,et al.  A modern solver interface to manage solution algorithms in the Community Earth System Model , 2012, Int. J. High Perform. Comput. Appl..

[20]  Fabien Gillet-Chaulet,et al.  Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice , 2011, Journal of Glaciology.

[21]  I. Joughin,et al.  21st-Century Evolution of Greenland Outlet Glacier Velocities , 2011, Science.

[22]  A. Payne,et al.  Resolution requirements for grounding-line modelling: sensitivity to basal drag and ice-shelf buttressing , 2012, Annals of Glaciology.

[23]  Ed Bueler,et al.  An enthalpy formulation for glaciers and ice sheets , 2012, Journal of Glaciology.

[24]  P. Christoffersen,et al.  Dynamic patterns of ice stream flow in a 3‐D higher‐order ice sheet model with plastic bed and simplified hydrology , 2011 .

[25]  I. Joughin,et al.  Kinematic first-order calving law implies potential for abrupt ice-shelf retreat , 2011 .

[26]  Thomas Zwinger,et al.  Impact of bedrock description on modeling ice sheet dynamics , 2011 .

[27]  B. Scheuchl,et al.  Ice Flow of the Antarctic Ice Sheet , 2011, Science.

[28]  Ian M. Howat,et al.  Multi-decadal retreat of Greenland’s marine-terminating glaciers , 2011, Journal of Glaciology.

[29]  Fuyuki Saito,et al.  Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet , 2011, Annals of Glaciology.

[30]  Katherine J. Evans,et al.  Implementation of the Jacobian-free Newton-Krylov method for solving the first-order ice sheet momentum balance , 2011, J. Comput. Phys..

[31]  Understanding and Modelling Rapid Dynamic Changes of Tidewater Outlet Glaciers: Issues and Implications , 2011 .

[32]  C. Schoof Marine ice sheet dynamics. Part 2. A Stokes flow contact problem , 2011, Journal of Fluid Mechanics.

[33]  Ian M. Howat,et al.  Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade , 2011, Proceedings of the National Academy of Sciences.

[34]  Eric Rignot,et al.  Ice flux divergence anomalies on 79north Glacier, Greenland , 2011 .

[35]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[36]  Maik Thomas,et al.  On the long-term memory of the Greenland Ice Sheet , 2011 .

[37]  Jack L. Saba,et al.  Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002 , 2011, Journal of Glaciology.

[38]  S. Cornford,et al.  Parameterising the grounding line in flow-line ice sheet models , 2010 .

[39]  C. Schoof Ice-sheet acceleration driven by melt supply variability , 2010, Nature.

[40]  B. Parizek,et al.  Implications of initial conditions and ice–ocean coupling for grounding-line evolution , 2010 .

[41]  Antony J. Payne,et al.  An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1) , 2010 .

[42]  I. C. Rutt,et al.  Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change , 2010 .

[43]  E. Bueler,et al.  The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet , 2010 .

[44]  Reto Knutti,et al.  Risks of Model Weighting in Multimodel Climate Projections , 2010 .

[45]  R. Arthern,et al.  Initialization of ice-sheet forecasts viewed as an inverse Robin problem , 2010, Journal of Glaciology.

[46]  Ian M. Howat,et al.  Greenland flow variability from ice-sheet-wide velocity mapping , 2010, Journal of Glaciology.

[47]  E. Bueler,et al.  The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description , 2010 .

[48]  A. Abe‐Ouchi,et al.  Modelled response of the volume and thickness of the Antarctic ice sheet to the advance of the grounded area , 2010, Annals of Glaciology.

[49]  Eric Rignot,et al.  Spatial patterns of basal drag inferred using control methods from a full‐Stokes and simpler models for Pine Island Glacier, West Antarctica , 2010 .

[50]  R. Hindmarsh,et al.  Coupling of ice‐shelf melting and buttressing is a key process in ice‐sheets dynamics , 2010 .

[51]  Richard F. Katz,et al.  Stability of ice-sheet grounding lines , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  Alun Hubbard,et al.  Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier , 2010 .

[53]  Laurence C. Smith,et al.  A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958-2007) , 2010 .

[54]  Reto Knutti,et al.  Challenges in Combining Projections from Multiple Climate Models , 2010 .

[55]  R. Alley,et al.  Effect of orbital‐scale climate cycling and meltwater drainage on ice sheet grounding line migration , 2010 .

[56]  Christian Schoof,et al.  Thin-Film Flows with Wall Slip: An Asymptotic Analysis of Higher Order Glacier Flow Models , 2010 .

[57]  B. Hewitson,et al.  Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections , 2010 .

[58]  D. Goldberg Numerical and theoretical treatment of grounding line movement and ice shelf buttressing in marine ice sheets , 2009 .

[59]  R. Alley,et al.  Surface elevation changes at the front of the Ross Ice Shelf: Implications for basal melting , 2009 .

[60]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[61]  D. Vaughan,et al.  Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets , 2009, Nature.

[62]  R. Alley,et al.  Ice sheet mass balance and sea level , 2009, Antarctic Science.

[63]  Gaël Durand,et al.  Full Stokes modeling of marine ice sheets: influence of the grid size , 2009, Annals of Glaciology.

[64]  I. Velicogna Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE , 2009 .

[65]  T. Zwinger,et al.  Marine ice sheet dynamics: Hysteresis and neutral equilibrium , 2009 .

[66]  M. R. van den Broeke,et al.  Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling , 2009 .

[67]  T. Scambos,et al.  Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups , 2009 .

[68]  David Pollard,et al.  Modelling West Antarctic ice sheet growth and collapse through the past five million years , 2009, Nature.

[69]  William H. Lipscomb,et al.  A Community Ice Sheet Model for Sea Level Prediction , 2009 .

[70]  Alun Hubbard,et al.  Greenland ice sheet motion coupled with daily melting in late summer , 2009 .

[71]  Ed Bueler,et al.  Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model , 2008, 0810.3449.

[72]  Carl E. Bøggild,et al.  A new present-day temperature parameterization for Greenland , 2009, Journal of Glaciology.

[73]  P. Heimbach,et al.  Greenland ice-sheet volume sensitivity to basal, surface and initial conditions derived from an adjoint model , 2009, Annals of Glaciology.

[74]  G. Gudmundsson,et al.  On the limit to resolution and information on basal properties obtainable from surface data on ice streams , 2008 .

[75]  David M. Holland,et al.  Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters , 2008 .

[76]  Ian M. Howat,et al.  Dynamic controls on glacier basal motion inferred from surface ice motion , 2008 .

[77]  Richard B. Alley,et al.  Effects of basal‐melting distribution on the retreat of ice‐shelf grounding lines , 2008 .

[78]  C. J. P. P. Smeets,et al.  Large and Rapid Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice Sheet , 2008, Science.

[79]  Eric Rignot,et al.  Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data , 2008 .

[80]  Ian Joughin,et al.  Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet , 2008, Science.

[81]  Ian Joughin,et al.  Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage , 2008, Science.

[82]  Charles Doutriaux,et al.  Performance metrics for climate models , 2008 .

[83]  Ian M. Howat,et al.  Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland , 2008 .

[84]  D. J. Wingham,et al.  Conditions for a steady ice sheet–ice shelf junction , 2008 .

[85]  K. Taylor,et al.  Performance metrics for climate models. J Geophys Res-Atmos 113:D06104 , 2008 .

[86]  William H. Lipscomb,et al.  Toward a new generation of ice sheet models , 2007 .

[87]  Ian Joughin,et al.  Numerical modeling of ocean‐ice interactions under Pine Island Bay's ice shelf , 2007 .

[88]  C. Schoof Ice sheet grounding line dynamics: Steady states, stability, and hysteresis , 2007 .

[89]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[90]  Sridhar Anandakrishnan,et al.  Effect of Sedimentation on Ice-Sheet Grounding-Line Stability , 2007, Science.

[91]  Sridhar Anandakrishnan,et al.  Discovery of Till Deposition at the Grounding Line of Whillans Ice Stream , 2007, Science.

[92]  D. Vaughan,et al.  Why Is It Hard to Predict the Future of Ice Sheets? , 2007, Science.

[93]  T. Scambos,et al.  Rapid Changes in Ice Discharge from Greenland Outlet Glaciers , 2007, Science.

[94]  L. Stearns,et al.  Rapid volume loss from two East Greenland outlet glaciers quantified using repeat stereo satellite imagery , 2007 .

[95]  Christian Schoof,et al.  Marine ice-sheet dynamics. Part 1. The case of rapid sliding , 2007, Journal of Fluid Mechanics.

[96]  E. van Meijgaard,et al.  Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model , 2006 .

[97]  Bert De Smedt,et al.  Role of transition zones in marine ice sheet dynamics , 2006 .

[98]  David G. Vaughan,et al.  Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission , 2006 .

[99]  E. Rignot,et al.  Changes in the Velocity Structure of the Greenland Ice Sheet , 2006, Science.

[100]  Tavi Murray,et al.  Rapid and synchronous ice‐dynamic changes in East Greenland , 2006 .

[101]  Nils Olsen,et al.  Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data , 2005, Science.

[102]  F. Giorgi Interdecadal variability of regional climate change: implications for the development of regional climate change scenarios , 2005 .

[103]  M. E. Peters,et al.  Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams , 2005 .

[104]  J. G. Ferrigno,et al.  Retreating Glacier Fronts on the Antarctic Peninsula over the Past Half-Century , 2005, Science.

[105]  Antony J. Payne,et al.  Assessing the ability of numerical ice sheet models to simulate grounding line migration , 2005 .

[106]  Francisco J. Doblas-Reyes,et al.  Forecast assimilation: a unified framework for the combination of multi-model weather and climate predictions , 2005 .

[107]  A. Abe‐Ouchi,et al.  Sensitivity of Greenland ice sheet simulation to the numerical procedure employed for ice-sheet dynamics , 2005, Annals of Glaciology.

[108]  A. Vieli,et al.  Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans , 2004 .

[109]  A. Shepherd,et al.  Warm ocean is eroding West Antarctic Ice Sheet , 2004 .

[110]  Ian Joughin,et al.  Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier , 2004, Nature.

[111]  T. Scambos,et al.  Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica , 2004 .

[112]  Michael H. Ritzwoller,et al.  Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica , 2004 .

[113]  Richard B. Alley,et al.  Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations , 2004 .

[114]  Jonathan L. Bamber,et al.  Mass Balance of the Cryosphere , 2004 .

[115]  A. Abe‐Ouchi,et al.  Thermal structure of Dome Fuji and east Dronning Maud Land, Antarctica, simulated by a three-dimensional ice-sheet model , 2004, Annals of Glaciology.

[116]  A. Payne,et al.  Mass Balance of the Cryosphere: Modelling land-ice dynamics , 2004 .

[117]  T. Grenfell,et al.  Ice motion and driving forces during a spring ice shove on the Alaskan Chukchi coast , 2004 .

[118]  I. Joughin,et al.  Melting and freezing beneath Filchner‐Ronne Ice Shelf, Antarctica , 2003 .

[119]  Matt A. King,et al.  Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf , 2003 .

[120]  S. Jacobs,et al.  Modelling the ocean circulation beneath the Ross Ice Shelf , 2003, Antarctic Science.

[121]  W. Peltier,et al.  Greenland glacial history and local geodynamic consequences , 2002 .

[122]  Konrad Steffen,et al.  Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow , 2002, Science.

[123]  H. Hellmer,et al.  Simulations of ice‐ocean dynamics in the Weddell Sea 1. Model configuration and validation , 2002 .

[124]  Sivaprasad Gogineni,et al.  A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors , 2001 .

[125]  Jonathan L. Bamber,et al.  A new ice thickness and bed data set for the Greenland ice sheet: 2. Relationship between dynamics and basal topography , 2001 .

[126]  K. Steffen,et al.  Sublimation on the Greenland Ice Sheet from automated weather station observations , 2001 .

[127]  David H. Bromwich,et al.  Trend surface analysis of Greenland accumulation , 2001 .

[128]  R. Gerdes,et al.  Ocean circulation and ice‐ocean interaction beneath the Amery Ice Shelf, Antarctica , 2001 .

[129]  R. Hardy,et al.  An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry , 2000, Journal of Glaciology.

[130]  Philippe Huybrechts,et al.  The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming , 1999 .

[131]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[132]  P. Huybrechts,et al.  Ice-dynamic conditions across the grounding zone, Ekströmisen, East Antarctica , 1999, Journal of Glaciology.

[133]  D. Vaughan,et al.  Reassessment of net surface mass balance in Antarctica , 1999 .

[134]  S. M. Marlais,et al.  An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I) , 1999 .

[135]  F. Pattyn,et al.  Report of the Third EISMINT Workshop on Model Intercomparison , 1998 .

[136]  R. Greve A continuum–mechanical formulation for shallow polythermal ice sheets , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[137]  V. Chugunov,et al.  Modelling of a marine glacier and ice-sheet-ice-shelf transition zone based on asymptotic analysis , 1996, Annals of Glaciology.

[138]  A. Wilchinsky,et al.  Modelling of a marine glacier and ice-sheet – ice shelf transition zone based on asymptotic analysis , 1996 .

[139]  Roland C. Warner,et al.  A computer scheme for rapid calculations of balance-flux distributions , 1996, Annals of Glaciology.

[140]  W. Dansgaard,et al.  Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles , 1995 .

[141]  J. Fastook,et al.  Modeling the ice age: the finite-element method in glaciology , 1994, IEEE Computational Science and Engineering.

[142]  Philippe Huybrechts,et al.  The present evolution of the Greenland ice sheet: an assessment by modelling , 1994 .

[143]  J. Fastook,et al.  A Finite-element Model of Antarctica: sensitivity test for meteorological mass-balance relationship , 1994, Journal of Glaciology.

[144]  T. Hughes,et al.  CHANGING ICE LOADS ON THE EARTH'S SURFACE DURING THE LAST GLACIATION CYCLE , 1991 .

[145]  Enzo Boschi,et al.  Glacial isostasy, sea-level and mantle rheology , 1991 .

[146]  A. Jenkins,et al.  Ice-Ocean Interaction On Ronne Ice Shelf, Antarctica , 1991, Annals of Glaciology.

[147]  J. Oerlemans,et al.  Parameterization of the Annual Surface Temperature and Mass Balance of Antarctica , 1990, Annals of Glaciology.

[148]  Douglas R. Macayeal,et al.  Large‐scale ice flow over a viscous basal sediment: Theory and application to ice stream B, Antarctica , 1989 .

[149]  N. Reeh,et al.  Parameterization of melt rate and surface temperature on the Greenland ice sheet , 1989 .

[150]  L. Morland Unconfined Ice-Shelf Flow , 1987 .

[151]  T. Hughes,et al.  The Jakobshanvs effect , 1986 .

[152]  L. Morland Thermomechanical balances of ice sheet flows , 1984 .

[153]  K. Hutter Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets , 1983 .

[154]  R. Thomas The Dynamics of Marine Ice Sheets , 1979, Journal of Glaciology.

[155]  T. Sanderson Equilibrium Profile of Ice Shelves , 1979, Journal of Glaciology.

[156]  J. H. Mercer West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster , 1978, Nature.

[157]  J. Weertman,et al.  Stability of the Junction of an Ice Sheet and an Ice Shelf , 1974, Journal of Glaciology.

[158]  R. Thomas,et al.  The Creep of Ice Shelves Theory , 1973, Journal of Glaciology.

[159]  J. Weertman,et al.  Deformation of Floating Ice Shelves , 1957, Journal of Glaciology.

[160]  H. Hellmer,et al.  Simulation of ice-ocean dynamics in the Weddell Sea . Part I : Model con guration and validation , 2022 .