Structural basis for transcription initiation by bacterial ECF σ factors

[1]  K. Severinov,et al.  Interplay between σ region 3.2 and secondary channel factors during promoter escape by bacterial RNA polymerase. , 2017, The Biochemical journal.

[2]  Nancy D. Connell,et al.  Structural Basis of Mycobacterium tuberculosis Transcription and Transcription Inhibition. , 2017, Molecular cell.

[3]  Emily C. Woods,et al.  Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. , 2017, Microbes and infection.

[4]  M. Glickman,et al.  Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA , 2017, eLife.

[5]  S. Weiss,et al.  Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase , 2016, Proceedings of the National Academy of Sciences.

[6]  Nicole C. Robb,et al.  RNA Polymerase Pausing during Initial Transcription , 2016, Molecular cell.

[7]  S. Busby,et al.  Local and global regulation of transcription initiation in bacteria , 2016, Nature Reviews Microbiology.

[8]  R. Ebright,et al.  Structural basis of transcription activation , 2016, Science.

[9]  J. Helmann Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. , 2016, Current opinion in microbiology.

[10]  C. Stallings,et al.  Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks , 2016, Journal of bacteriology.

[11]  SangYoun Park,et al.  In Streptomyces coelicolor SigR, methionine at the -35 element interacting region 4 confers the -31'-adenine base selectivity. , 2016, Biochemical and biophysical research communications.

[12]  Deanne M. Taylor,et al.  Massively Systematic Transcript End Readout, "MASTER": Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields. , 2015, Molecular cell.

[13]  J. Herrou,et al.  General Stress Signaling in the Alphaproteobacteria. , 2015, Annual review of genetics.

[14]  S. Darst,et al.  Structure of a bacterial RNA polymerase holoenzyme open promoter complex , 2015, eLife.

[15]  M. Paget Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution , 2015, Biomolecules.

[16]  Emily F. Ruff,et al.  Initial Events in Bacterial Transcription Initiation , 2015, Biomolecules.

[17]  Thomas A Steitz,et al.  Crystal structures of the E. coli transcription initiation complexes with a complete bubble. , 2015, Molecular cell.

[18]  J. Vorholt,et al.  Extra Cytoplasmic Function sigma factors, recent structural insights into promoter recognition and regulation. , 2015, Current opinion in structural biology.

[19]  Brian D Sharon,et al.  Bacterial sigma factors: a historical, structural, and genomic perspective. , 2014, Annual review of microbiology.

[20]  J. Mukhopadhyay,et al.  Optimization of recombinant Mycobacterium tuberculosis RNA polymerase expression and purification. , 2014, Tuberculosis.

[21]  K. Murakami,et al.  Structural Basis of Transcription Initiation by Bacterial RNA Polymerase Holoenzyme* , 2014, The Journal of Biological Chemistry.

[22]  R. Ebright,et al.  Transcription inhibition by the depsipeptide antibiotic salinamide A , 2014, eLife.

[23]  J. Vorholt,et al.  Structural basis for −10 promoter element melting by environmentally induced sigma factors , 2014, Nature Structural &Molecular Biology.

[24]  A. Kulbachinskiy,et al.  Distinct functions of the RNA polymerase σ subunit region 3.2 in RNA priming and promoter escape , 2014, Nucleic acids research.

[25]  Christopher A. Voigt,et al.  Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters , 2013, Molecular Systems Biology.

[26]  Craig T Martin,et al.  Insights into the Mechanism of Initial Transcription in Escherichia coli RNA Polymerase* , 2013, The Journal of Biological Chemistry.

[27]  T. Mascher Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors. , 2013, Current opinion in microbiology.

[28]  R. Ebright,et al.  Structural Basis of Transcription Initiation , 2012, Science.

[29]  S. Sainsbury,et al.  Structure and function of the initially transcribing RNA polymerase II–TFIIB complex , 2012, Nature.

[30]  S. Busby,et al.  Activating transcription in bacteria. , 2012, Annual review of microbiology.

[31]  Shimon Weiss,et al.  Opening and Closing of the Bacterial RNA Polymerase Clamp , 2012, Science.

[32]  S. Darst,et al.  Structural Basis for Promoter −10 Element Recognition by the Bacterial RNA Polymerase σ Subunit , 2011, Cell.

[33]  D. Bushnell,et al.  Lock and Key to Transcription: σ-DNA Interaction , 2011, Cell.

[34]  P. Dehaseth,et al.  Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. , 2011, Journal of molecular biology.

[35]  Yulia Yuzenkova,et al.  A new basal promoter element recognized by RNA polymerase core enzyme , 2011, The EMBO journal.

[36]  A. Tyagi,et al.  The sigma factors of Mycobacterium tuberculosis: regulation of the regulators , 2010, The FEBS journal.

[37]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[38]  Luke E. Ulrich,et al.  The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) σ factor protein family , 2009, Molecular microbiology.

[39]  C. Gross,et al.  Reduced capacity of alternative sigmas to melt promoters ensures stringent promoter recognition. , 2009, Genes & development.

[40]  Sahadevan Raman,et al.  Critical Role of a Single Position in the −35 Element for Promoter Recognition by Mycobacterium tuberculosis SigE and SigH , 2008, Journal of bacteriology.

[41]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[42]  T. D. Schneider,et al.  Anatomy of Escherichia coli σ70 promoters , 2006, Nucleic acids research.

[43]  Sébastien Rodrigue,et al.  The sigma factors of Mycobacterium tuberculosis. , 2006, FEMS microbiology reviews.

[44]  W. Lane,et al.  The Structural Basis for Promoter −35 Element Recognition by the Group IV σ Factors , 2006, PLoS biology.

[45]  K. Severinov,et al.  A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme. , 2006, Molecular cell.

[46]  A. Mustaev,et al.  Region 3.2 of the σ Subunit Contributes to the Binding of the 3′-Initiating Nucleotide in the RNA Polymerase Active Center and Facilitates Promoter Clearance during Initiation* , 2006, Journal of Biological Chemistry.

[47]  Konstantin Severinov,et al.  A Consensus Adenine at Position –11 of the Nontemplate Strand of Bacterial Promoter Is Important for Nucleation of Promoter Melting* , 2006, Journal of Biological Chemistry.

[48]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[49]  C. Gross,et al.  Multiple sigma subunits and the partitioning of bacterial transcription space. , 2003, Annual review of microbiology.

[50]  C. Gross,et al.  Crystal Structure of Escherichia coli σE with the Cytoplasmic Domain of Its Anti-σ RseA , 2003 .

[51]  G. Schoolnik,et al.  Role of the extracytoplasmic‐function σ Factor σH in Mycobacterium tuberculosis global gene expression , 2002 .

[52]  K. Murakami,et al.  Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution , 2002, Science.

[53]  S. Darst,et al.  Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit , 2002 .

[54]  Siddhartha Roy,et al.  A “master” in base unpairing during isomerization of a promoter upon RNA polymerase binding , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  W. Jacobs,et al.  The Alternative Sigma Factor SigH Regulates Major Components of Oxidative and Heat Stress Responses in Mycobacterium tuberculosis , 2001, Journal of bacteriology.

[56]  P. Dehaseth,et al.  Different Roles for Basic and Aromatic Amino Acids in Conserved Region 2 of Escherichia coli ς70 in the Nucleation and Maintenance of the Single-stranded DNA Bubble in Open RNA Polymerase-Promoter Complexes* , 2001, The Journal of Biological Chemistry.

[57]  G. Crabtree,et al.  Transcription: Regulation of the regulators , 2000, Nature.

[58]  J. Gralla,et al.  Escherichia coli promoter opening and −10 recognition: mutational analysis of σ70 , 2000 .

[59]  S. Busby,et al.  Region 2.5 of the Escherichia coli RNA polymerase σ70 subunit is responsible for the recognition of the ‘extended −10’ motif at promoters , 1997, The EMBO journal.

[60]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[61]  J. Helmann,et al.  A promoter melting region in the primary sigma factor of Bacillus subtilis. Identification of functionally important aromatic amino acids. , 1994, Journal of molecular biology.

[62]  S. Darst,et al.  Structure of the bacterial RNA polymerase promoter specificity sigma subunit. , 2002, Molecular cell.

[63]  G. Schoolnik,et al.  Role of the extracytoplasmic-function sigma factor sigma(H) in Mycobacterium tuberculosis global gene expression. , 2002, Molecular microbiology.

[64]  J. Gralla,et al.  Escherichia coli promoter opening and -10 recognition: mutational analysis of sigma70. , 2000, The EMBO journal.

[65]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.