Saturation: An Efficient Iteration Strategy for Symbolic State-Space Generation

This paper presents a novel algorithm for generating state spaces of asynchronous systems using Multi-valued Decision Diagrams. In contrast to related work, the next-state function of a system is not encoded as a single Boolean function, but as cross-products of integer functions. This permits the application of various iteration strategies to build a system''s state space. In particular, this paper introduces a new elegant strategy, called saturation, and implements it in the tool SMART. On top of usually performing several orders of magnitude faster than existing BDD-based state-space generators, the algorithm''s required peak memory is often close to the final memory needed for storing the overall state spaces.

[1]  Janne Halme,et al.  PROD Reference Manual , 1995 .

[2]  Patrice Godefroid,et al.  Partial-Order Methods for the Verification of Concurrent Systems , 1996, Lecture Notes in Computer Science.

[3]  Fausto Giunchiglia,et al.  NUSMV: A New Symbolic Model Verifier , 1999, CAV.

[4]  Stephan Merz,et al.  Model Checking , 2000 .

[5]  Susanne Graf,et al.  Compositional Minimization of Finite State Systems Using Interface Speciications , 1995 .

[6]  Masahiro Fujita,et al.  Variable ordering algorithms for ordered binary decision diagrams and their evaluation , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[8]  Jordi Cortadella,et al.  Efficient encoding schemes for symbolic analysis of Petri nets , 1998, Proceedings Design, Automation and Test in Europe.

[9]  Robert K. Brayton,et al.  Partial-Order Reduction in Symbolic State-Space Exploration , 2001, Formal Methods Syst. Des..

[10]  Wang Yi,et al.  Compositional and symbolic model-checking of real-time systems , 1995, Proceedings 16th IEEE Real-Time Systems Symposium.

[11]  Gianfranco Ciardo,et al.  SMART: simulation and Markovian analyzer for reliability and timing , 1996, Proceedings of IEEE International Computer Performance and Dependability Symposium.

[12]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[13]  Anna Philippou,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2018, Lecture Notes in Computer Science.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Kenneth L. McMillan,et al.  A Conjunctively Decomposed Boolean Representation for Symbolic Model Checking , 1996, CAV.

[16]  Gianfranco Ciardo,et al.  Efficient Reachability Set Generation and Storage Using Decision Diagrams , 1999, ICATPN.

[17]  Jørgen Staunstrup,et al.  Partial Model Checking with ROBDDs , 1997, TACAS.

[18]  J. Huisman The Netherlands , 1996, The Lancet.

[19]  Tiziano Villa,et al.  Multi-valued decision diagrams: theory and applications , 1998 .

[20]  Kenneth L. McMillan,et al.  Symbolic model checking: an approach to the state explosion problem , 1992 .

[21]  Rob van Glabbeek,et al.  Handbook of Process Algebra , 2001 .

[22]  Pranav Ashar,et al.  Efficient breadth-first manipulation of binary decision diagrams , 1994, ICCAD.

[23]  Jordi Cortadella,et al.  Petri Net Analysis Using Boolean Manipulation , 1994, Application and Theory of Petri Nets.

[24]  Olivier Coudert,et al.  A Performance Study of BDD-Based Model Checking , 1998, FMCAD.

[25]  Rance Cleaveland,et al.  The concurrency workbench: a semantics-based tool for the verification of concurrent systems , 1993, TOPL.

[26]  Laurent Mounier,et al.  Compositional State Space Generation from Lotos Programs , 1997, TACAS.

[27]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[28]  Gianfranco Ciardo,et al.  Storage Alternatives for Large Structured State Spaces , 1997, Computer Performance Evaluation.

[29]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[30]  Gianfranco Ciardo,et al.  Efficient Symbolic State-Space Construction for Asynchronous Systems , 2000, ICATPN.

[31]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[32]  Mary Sheeran,et al.  A Tutorial on Stålmarck's Proof Procedure for Propositional Logic , 2000, Formal Methods Syst. Des..

[33]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[34]  Edmund M. Clarke,et al.  Formal Methods: State of the Art and Future Directions Working Group Members , 1996 .

[35]  Parosh Aziz Abdulla,et al.  Symbolic Reachability Analysis Based on SAT-Solvers , 2000, TACAS.

[36]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.