Searching for Ultralight Dark Matter Conversion in Solar Corona using LOFAR Data

Ultralight axions and dark photons are well-motivated dark matter (DM) candidates. The axion DM and dark photon DM (DPDM) can resonantly convert into electromagnetic (EM) waves in the solar corona when their mass is equal to the solar plasma frequency. The resultant EM waves are mono-chromatic in the radio-frequency range with an energy equal to the DM mass, which can be detected via radio telescopes for solar observations. We search for converted mono-chromatic signals in the observational data of the high-sensitivity Low Frequency Array (LOFAR) telescope. We find the upper limit on the kinetic mixing coupling between DPDM and photon can reach 10 − 13 in the frequency range 30 − 80 MHz, which is about one order of magnitude better than the existing constraint from the cosmic microwave background (CMB) observation. In addition, we also get the upper limit on the axion-photon coupling in the same frequency range, which is better than the constraints from Light-Shining-through-a-Wall experiments but does not exceed the CAST or other astrophysical bounds.

[1]  H. An,et al.  Direct Detection of Dark Photon Dark Matter Using Radio Telescopes. , 2022, Physical review letters.

[2]  N. Song,et al.  Listening for dark photon radio signals from the Galactic Center , 2022, Physical Review D.

[3]  James O. J. Davies,et al.  Constraints on axionlike particles from a combined analysis of three flaring Fermi flat-spectrum radio quasars , 2022, Physical Review D.

[4]  C. Weniger,et al.  Novel Constraints on Axions Produced in Pulsar Polar Cap Cascades , 2022, 2209.09917.

[5]  M. Dolan,et al.  Advancing globular cluster constraints on the axion-photon coupling , 2022, Journal of Cosmology and Astroparticle Physics.

[6]  B. Grefenstette,et al.  First Indirect Detection Constraints on Axions in the Solar Basin. , 2022, Physical review letters.

[7]  F. Takahashi,et al.  Gravitational production of dark photon dark matter with mass generated by the Higgs mechanism , 2022, Journal of Cosmology and Astroparticle Physics.

[8]  B. Safdi,et al.  Upper limit on the axion-photon coupling from magnetic white dwarf polarization , 2022, Physical Review D.

[9]  X. Bi,et al.  Searching for Axion-Like Particles with the Blazar Observations of MAGIC and Fermi-LAT , 2021, Chinese Physics C, High Energy Physics & Nuclear Physics.

[10]  M. Gorji,et al.  Dark matter from entropy perturbations in curved field space , 2021, Physical Review D.

[11]  C. Chiang,et al.  Probing dark gauge boson with observations from neutron stars , 2021, Physical Review D.

[12]  M. Diamond,et al.  γ-Ray Flashes from Dark Photons in Neutron Star Mergers. , 2021, Physical review letters.

[13]  J. Santiago,et al.  Dark photon dark matter from a rolling inflaton , 2021, Journal of Cosmology and Astroparticle Physics.

[14]  G. Raffelt,et al.  Muonic Boson Limits: Supernova Redux , 2021, 2109.03244.

[15]  Tao Zhang,et al.  Dark Matter Search Results from the PandaX-4T Commissioning Run. , 2021, Physical review letters.

[16]  K. Nakayama,et al.  Hidden photon and axion dark matter from symmetry breaking , 2021, Journal of High Energy Physics.

[17]  A. Caputo,et al.  Dark photon limits: A handbook , 2021, Physical Review D.

[18]  A. Pierce,et al.  Gravitational waves and dark photon dark matter from axion rotations , 2021, Journal of High Energy Physics.

[19]  E. Kolb,et al.  Completely dark photons from gravitational particle production during the inflationary era , 2021, Journal of High Energy Physics.

[20]  K. Irwin,et al.  Search for dark photon dark matter: Dark E field radio pilot experiment , 2021, Physical Review D.

[21]  X. Bi,et al.  Exploring axion dark matter through radio signals from magnetic white dwarf stars , 2021, 2101.02585.

[22]  P. F. de Salas,et al.  Dark matter local density determination: recent observations and future prospects , 2020, Reports on progress in physics. Physical Society.

[23]  Seokhoon Yun,et al.  Cooling of young neutron stars and dark gauge bosons , 2020, Physical Review D.

[24]  M. Gorji,et al.  Dark photon dark matter from charged inflaton , 2020, Journal of High Energy Physics.

[25]  H. An,et al.  Radio-frequency Dark Photon Dark Matter across the Sun. , 2020, Physical review letters.

[26]  Su-jie Lin,et al.  Limits on axionlike particles from Mrk 421 with 4.5-year period observations by ARGO-YBJ and Fermi-LAT , 2020, Physical Review D.

[27]  M. Gorji,et al.  Vector dark matter production from inflation with symmetry breaking , 2020, Physical Review D.

[28]  Jiansen He,et al.  Global maps of the magnetic field in the solar corona , 2020, Science.

[29]  J. Pradler,et al.  New limits on dark photons from solar emission and keV scale dark matter , 2020, Physical Review D.

[30]  K. Nakayama,et al.  Gravitational production of hidden photon dark matter in light of the XENON1T excess , 2020, Physics Letters B.

[31]  M. Meyer,et al.  Search for Axionlike-Particle-Induced Prompt γ-Ray Emission from Extragalactic Core-Collapse Supernovae with the Fermi Large Area Telescope. , 2020, Physical review letters.

[32]  B. Grzadkowski,et al.  Gravitational production of vector dark matter , 2020, Journal of High Energy Physics.

[33]  Y. Nakai,et al.  Light dark photon dark matter from inflation , 2020, Journal of High Energy Physics.

[34]  K. Nakayama Constraint on vector coherent oscillation dark matter with kinetic function , 2020, Journal of Cosmology and Astroparticle Physics.

[35]  Su-jie Lin,et al.  Implications of axion-like particles from the Fermi-LAT and H.E.S.S. observations of PG 1553+113 and PKS 2155−304 , 2020, Chinese Physics C.

[36]  D. Tanner,et al.  ADMX SLIC: Results from a Superconducting LC Circuit Investigating Cold Axions. , 2019, Physical review letters.

[37]  Samuel D. McDermott,et al.  Cosmological evolution of light dark photon dark matter , 2019, Physical Review D.

[38]  G. Alvarez,et al.  Misalignment & Co.: (pseudo-)scalar and vector dark matter with curvature couplings , 2019, Journal of Cosmology and Astroparticle Physics.

[39]  F. Takahashi,et al.  Relic abundance of dark photon dark matter , 2018, Physics Letters B.

[40]  E. Kontar,et al.  Anisotropic Radio-wave Scattering and the Interpretation of Solar Radio Emission Observations , 2019, The Astrophysical Journal.

[41]  A. Lobanov,et al.  First results from the WISPDMX radio frequency cavity searches for hidden photon dark matter , 2019, Journal of Cosmology and Astroparticle Physics.

[42]  K. Nakayama Vector coherent oscillation dark matter , 2019, Journal of Cosmology and Astroparticle Physics.

[43]  M. Valluri,et al.  On the estimation of the local dark matter density using the rotation curve of the Milky Way , 2019, Journal of Cosmology and Astroparticle Physics.

[44]  K. Nakayama,et al.  Production of purely gravitational dark matter: the case of fermion and vector boson , 2019, Journal of High Energy Physics.

[45]  B. Safdi,et al.  X-Ray Signatures of Axion Conversion in Magnetic White Dwarf Stars. , 2019, Physical review letters.

[46]  E. Kontar,et al.  A Fokker–Planck Framework for Studying the Diffusion of Radio Burst Waves in the Solar Corona , 2019, The Astrophysical Journal.

[47]  Lian-tao Wang,et al.  Dark photon dark matter from a network of cosmic strings , 2019, Physical Review D.

[48]  B. Safdi,et al.  Detecting axion dark matter with radio lines from neutron star populations , 2018, Physical Review D.

[49]  J. A. Dror,et al.  Parametric resonance production of ultralight vector dark matter , 2018, Physical Review D.

[50]  J. Santiago,et al.  Vector dark matter production at the end of inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[51]  A. Pierce,et al.  Dark photon dark matter produced by axion oscillations , 2018, Physical Review D.

[52]  K. Sinha,et al.  X-ray polarization signals from magnetars with axion-like-particles , 2018, Journal of High Energy Physics.

[53]  E Aprile,et al.  Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. , 2018, Physical review letters.

[54]  B. Safdi,et al.  Radio Signals from Axion Dark Matter Conversion in Neutron Star Magnetospheres. , 2018, Physical review letters.

[55]  K. Sinha,et al.  Constraining axion-like-particles with hard X-ray emission from magnetars , 2018, Journal of High Energy Physics.

[56]  K. Kadota,et al.  Radio telescope search for the resonant conversion of cold dark matter axions from the magnetized astrophysical sources , 2018, Physical Review D.

[57]  J. Jaeckel,et al.  Decay photons from the axionlike particles burst of type II supernovae , 2017, Physical Review D.

[58]  E. Kontar,et al.  Imaging spectroscopy of solar radio burst fine structures , 2017, Nature Communications.

[59]  M. J. Pivovaroff,et al.  New CAST limit on the axion–photon interaction , 2017, Nature Physics.

[60]  M. Maksimović,et al.  The Solar Probe Plus Radio Frequency Spectrometer: Measurement requirements, analog design, and digital signal processing , 2017 .

[61]  S Fiorucci,et al.  Results from a Search for Dark Matter in the Complete LUX Exposure. , 2016, Physical review letters.

[62]  T. J. Dijkema,et al.  The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release , 2016, 1611.02700.

[63]  M. Razzano,et al.  Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope. , 2016, Physical review letters.

[64]  P. Graham,et al.  Vector Dark Matter from Inflationary Fluctuations , 2015, 1504.02102.

[65]  J. Zicha,et al.  New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall , 2015, 1506.08082.

[66]  S. Basu,et al.  New axion and hidden photon constraints from a solar data global fit , 2015, 1501.01639.

[67]  J. Pradler,et al.  Direct detection constraints on dark photon dark matter , 2014, 1412.8378.

[68]  M. Giannotti,et al.  Revisiting the bound on axion-photon coupling from globular clusters. , 2014, Physical review letters.

[69]  M. Aschwanden Chapter 11 – The Sun , 2014 .

[70]  M. Thumm,et al.  First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS) , 2013 .

[71]  G. Raffelt,et al.  Solar constraints on hidden photons re-visited , 2013, 1305.2920.

[72]  J. Pradler,et al.  Dark matter detectors as dark photon helioscopes. , 2013, Physical review letters.

[73]  J. Pradler,et al.  New stellar constraints on dark photons , 2013, 1302.3884.

[74]  A. Ringwald,et al.  WISPy cold dark matter , 2012, 1201.5902.

[75]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[76]  A. Angelis,et al.  Relevance of axion-like particles for very-high-energy astrophysics , 2011, 1106.1132.

[77]  A. Nelson,et al.  Dark light, dark matter, and the misalignment mechanism , 2011, 1105.2812.

[78]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[79]  Munich,et al.  New ALPS results on hidden-sector lightweights , 2010, 1004.1313.

[80]  Rainer Beck,et al.  Square kilometre array , 2010, Scholarpedia.

[81]  J. Binney,et al.  The uncertainty in Galactic parameters , 2009, 0907.4685.

[82]  A. Ringwald,et al.  Naturally light hidden photons in LARGE volume string compactifications , 2009, 0909.0515.

[83]  H. Rix,et al.  GALACTIC MASERS AND THE MILKY WAY CIRCULAR VELOCITY , 2009, 0907.5423.

[84]  Javier Redondo,et al.  Massive hidden photons as lukewarm dark matter , 2008, 0811.0326.

[85]  M. Shimojo,et al.  3D Simulations of the Quiet Sun Radio Emission at Millimeter and Submillimeter Wavelengths , 2008 .

[86]  R. Macdowall,et al.  Effects of Scattering on Radio Emission from the Quiet Sun at Low Frequencies , 2008 .

[87]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[88]  A. Ringwald,et al.  Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology , 2008, 0803.1449.

[89]  A. Ringwald,et al.  Illuminating the hidden sector of string theory by shining light through a magnetic field , 2006, hep-ph/0608248.

[90]  S. Popov,et al.  Conversion of dark matter axions to photons in magnetospheres of neutron stars , 2007, 0711.1264.

[91]  E. Witten,et al.  Axions In String Theory , 2006, hep-th/0605206.

[92]  S. Abel,et al.  Brane–antibrane kinetic mixing, millicharged particles and SUSY breaking , 2003, hep-th/0311051.

[93]  S. Solanki,et al.  The solar magnetic field , 2006, 1008.0771.

[94]  K. Arzner,et al.  RADIOWAVE PROPAGATION IN A STATISTICALLY INHOMOGENEOUS PLASMA , 1999 .

[95]  C. Kolda,et al.  Kinetic mixing and the supersymmetric gauge hierarchy , 1996, hep-ph/9610479.

[96]  L. Stodolsky,et al.  Mixing of the photon with low-mass particles. , 1988, Physical review. D, Particles and fields.

[97]  Dagdeviren,et al.  Proposed experiment to produce and detect light pseudoscalars. , 1987, Physical review letters.

[98]  B. Holdom Two U(1)'s and Epsilon Charge Shifts , 1986 .

[99]  P. Sikivie,et al.  Detection rates for "invisible"-axion searches. , 1985, Physical review. D, Particles and fields.

[100]  P. Sikivie Experimental Tests of the "INVISIBLE" Axion , 1983 .

[101]  P. Sikivie,et al.  Can galactic halos be made of axions , 1983 .

[102]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[103]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[104]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[105]  L. Okun LIMITS OF ELECTRODYNAMICS: PARAPHOTONS? , 1982 .

[106]  A. Vilenkin,et al.  Cosmic strings and domain walls in models with Goldstone and pseudo Goldstone bosons , 1982 .

[107]  P. Sikivie Axions, Domain Walls, and the Early Universe , 1982 .

[108]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[109]  S. Weinberg A new light boson , 1978 .