Chaos-driven Discrete Artificial Bee Colony

In this paper, a chaos driven Discrete Artificial Bee Algorithm is introduced. The main premise of this work is to ascertain if using chaos maps in lieu of standard pseudorandom number generators can improve the performance of the canonical algorithm. Nine unique chaos maps are embedded in the Discrete Artificial Bee Algorithm alongside the Mersenne twister and evaluated on the lot-streaming flowshop scheduling problem with setup time. Based on the obtained results, a number of chaotic maps significantly improve the performance of the algorithm. Additionally, the new algorithm is favourably compared with the chaos driven Enhanced Differential Evolution algorithm for the same problem.

[1]  Donald Davendra,et al.  Traveling Salesman Problem, Theory and Applications , 2010 .

[2]  Michal Pluhacek,et al.  Hidden Periodicity - Chaos Dependance on Numerical Precision , 2013, NOSTRADAMUS.

[3]  M. Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities , 2014 .

[4]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem , 2011, Inf. Sci..

[5]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops , 2011, Inf. Sci..

[6]  R. Lozi New Enhanced Chaotic Number Generators , 2007 .

[7]  Michal Pluhacek,et al.  Chaos PSO algorithm driven alternately by two different chaotic maps - An initial study , 2013, 2013 IEEE Congress on Evolutionary Computation.

[8]  Yushun Fan,et al.  A chaos search immune algorithm with its application to neuro-fuzzy controller design , 2006 .

[9]  Ahmet Bedri Özer,et al.  CIDE: Chaotically Initialized Differential Evolution , 2010, Expert Syst. Appl..

[10]  Roman Senkerik,et al.  Chaos Driven Evolutionary Algorithm for the Traveling Salesman Problem , 2010 .

[11]  Michal Pluhacek,et al.  On the behavior and performance of chaos driven PSO algorithm with inertia weight , 2013, Comput. Math. Appl..

[12]  Michal Pluhacek,et al.  Chaos Driven Evolutionary Algorithm: a New Approach for Evolutionary Optimization , 2013 .

[13]  Roman Senkerik,et al.  Chaos driven evolutionary algorithms for the task of PID control , 2010, Comput. Math. Appl..

[14]  R. Lozi Chaotic Pseudo Random Number Generators via Ultra Weak Coupling of Chaotic Maps and Double Threshold Sampling Sequences , 2009 .

[15]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[16]  Michal Pluhacek,et al.  Do Evolutionary Algorithms Indeed Require Random Numbers? Extended Study , 2013, NOSTRADAMUS.

[17]  Quan-Ke Pan,et al.  An estimation of distribution algorithm for lot-streaming flow shop problems with setup times , 2012 .

[18]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[19]  Charles Herring,et al.  Random number generators are chaotic , 1989, CACM.

[20]  Quan-Ke Pan,et al.  A discrete artificial bee colony algorithm for the no-idle permutation flowshop scheduling problem with the total tardiness criterion , 2013 .

[21]  B. Alatas,et al.  Chaos embedded particle swarm optimization algorithms , 2009 .

[22]  J. Palmore,et al.  Shadowing by computable chaotic orbits , 1987 .

[23]  Ying Wang,et al.  Chaotic differential evolution methods for dynamic economic dispatch with valve-point effects , 2011, Eng. Appl. Artif. Intell..

[24]  J. Sprott Chaos and time-series analysis , 2001 .

[25]  Roman Senkerik,et al.  Scheduling the Lot-Streaming Flowshop scheduling problem with setup time with the chaos-induced Enhanced Differential Evolution , 2013, 2013 IEEE Symposium on Differential Evolution (SDE).

[26]  Xiaohui Yuan,et al.  Hydrothermal scheduling using chaotic hybrid differential evolution , 2008 .

[27]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[28]  L. Kocarev,et al.  Chaos-based random number generators-part I: analysis [cryptography] , 2001 .