Computations in quantum tensor networks

[1]  Yu-An Chen,et al.  Density matrix renormalization group , 2014 .

[2]  T. Schulte-Herbrüggen,et al.  Exploiting matrix symmetries and physical symmetries in matrix product states and tensor trains , 2013, 1301.0746.

[3]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[4]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[5]  On Interpolating Blaschke Products and Blaschke-Oscillatory Equations , 2011 .

[6]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[7]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[8]  J. Ignacio Cirac,et al.  Matrix product state and mean-field solutions for one-dimensional systems can be found efficiently , 2010 .

[9]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[10]  Ivan V. Oseledets,et al.  Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..

[11]  F. Verstraete,et al.  Renormalization and tensor product states in spin chains and lattices , 2009, 0910.1130.

[12]  Ivan Oseledets,et al.  Recursive decomposition of multidimensional tensors , 2009 .

[13]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[14]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[15]  Eugene E. Tyrtyshnikov,et al.  Linear algebra for tensor problems , 2009, Computing.

[16]  W. Dur,et al.  Renormalization algorithm with graph enhancement , 2008, 0802.1211.

[17]  F. Verstraete,et al.  Matrix product operator representations , 2008, 0804.3976.

[18]  Mikio Nakahara,et al.  Quantum Computing - From Linear Algebra to Physical Realizations , 2008 .

[19]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[20]  Norbert Schuch,et al.  Computational difficulty of finding matrix product ground states. , 2008, Physical review letters.

[21]  Norbert Schuch,et al.  Simulation of quantum many-body systems with strings of operators and Monte Carlo tensor contractions. , 2008, Physical review letters.

[22]  J Eisert,et al.  Unifying variational methods for simulating quantum many-body systems. , 2007, Physical review letters.

[23]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[24]  J. Cirac,et al.  Topology in quantum states. PEPS formalism and beyond , 2007 .

[25]  F. Verstraete,et al.  Simulation of quantum many-body systems with strings of operators and Monte Carlo tensor contractions. , 2007, Physical review letters.

[26]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[27]  F. Verstraete,et al.  Computational complexity of projected entangled pair states. , 2007, Physical review letters.

[28]  M. Hastings Entropy and entanglement in quantum ground states , 2007, cond-mat/0701055.

[29]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[30]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[31]  J. García-Ripoll Time evolution algorithms for Matrix Product States and DMRG , 2006, cond-mat/0610210.

[32]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[33]  F. Verstraete,et al.  Ground-state approximation for strongly interacting spin systems in arbitrary spatial dimension. , 2006, Physical review letters.

[34]  J. García-Ripoll Time evolution of Matrix Product States , 2006, cond-mat/0602305.

[35]  J. Eisert,et al.  Entanglement-area law for general bosonic harmonic lattice systems (14 pages) , 2005, quant-ph/0505092.

[36]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[37]  Juan José García-Ripoll,et al.  Time evolution of Matrix Product States , 2006 .

[38]  Pierre Comon,et al.  Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..

[39]  J. Eisert,et al.  Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2004, Physical review letters.

[40]  D Porras,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[41]  Rasmus Bro,et al.  Multi-way Analysis with Applications in the Chemical Sciences , 2004 .

[42]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[43]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[44]  F. Verstraete,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[45]  F. Verstraete,et al.  Valence-bond states for quantum computation , 2003, quant-ph/0311130.

[46]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[47]  M. Martin-Delgado,et al.  Stripe ansätze from exactly solved models , 2001, cond-mat/0101458.

[48]  Mark Coppejans,et al.  Breaking the Curse of Dimensionality , 2000 .

[49]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[50]  Stefano Serra Capizzano,et al.  Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear , 2000, SIAM J. Matrix Anal. Appl..

[51]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[52]  M. Fannes,et al.  Abundance of translation invariant pure states on quantum spin chains , 1992 .

[53]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[54]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[55]  Affleck,et al.  Large-n limit of SU(n) quantum "spin" chains. , 1985, Physical review letters.

[56]  Antonio Cantoni,et al.  Properties of the Eigenvectors of Persymmetric Matrices with Applications to Communication Theory , 1976, IEEE Trans. Commun..

[57]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[58]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[59]  P. Pfeuty The one-dimensional Ising model with a transverse field , 1970 .

[60]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .