Computations in quantum tensor networks
暂无分享,去创建一个
T. Schulte-Herbrüggen | T. Huckle | T. Schulte-Herbrueggen | T. Schulte-Herbrueggen | K. Waldherr | T. Huckle | K. Waldherr
[1] Yu-An Chen,et al. Density matrix renormalization group , 2014 .
[2] T. Schulte-Herbrüggen,et al. Exploiting matrix symmetries and physical symmetries in matrix product states and tensor trains , 2013, 1301.0746.
[3] S. R. Simanca,et al. On Circulant Matrices , 2012 .
[4] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[5] On Interpolating Blaschke Products and Blaschke-Oscillatory Equations , 2011 .
[6] B. Khoromskij. O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .
[7] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[8] J. Ignacio Cirac,et al. Matrix product state and mean-field solutions for one-dimensional systems can be found efficiently , 2010 .
[9] J. Eisert,et al. Area laws for the entanglement entropy - a review , 2008, 0808.3773.
[10] Ivan V. Oseledets,et al. Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..
[11] F. Verstraete,et al. Renormalization and tensor product states in spin chains and lattices , 2009, 0910.1130.
[12] Ivan Oseledets,et al. Recursive decomposition of multidimensional tensors , 2009 .
[13] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[14] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[15] Eugene E. Tyrtyshnikov,et al. Linear algebra for tensor problems , 2009, Computing.
[16] W. Dur,et al. Renormalization algorithm with graph enhancement , 2008, 0802.1211.
[17] F. Verstraete,et al. Matrix product operator representations , 2008, 0804.3976.
[18] Mikio Nakahara,et al. Quantum Computing - From Linear Algebra to Physical Realizations , 2008 .
[19] F. Verstraete,et al. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.
[20] Norbert Schuch,et al. Computational difficulty of finding matrix product ground states. , 2008, Physical review letters.
[21] Norbert Schuch,et al. Simulation of quantum many-body systems with strings of operators and Monte Carlo tensor contractions. , 2008, Physical review letters.
[22] J Eisert,et al. Unifying variational methods for simulating quantum many-body systems. , 2007, Physical review letters.
[23] Matthew B Hastings,et al. Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.
[24] J. Cirac,et al. Topology in quantum states. PEPS formalism and beyond , 2007 .
[25] F. Verstraete,et al. Simulation of quantum many-body systems with strings of operators and Monte Carlo tensor contractions. , 2007, Physical review letters.
[26] M. Hastings,et al. An area law for one-dimensional quantum systems , 2007, 0705.2024.
[27] F. Verstraete,et al. Computational complexity of projected entangled pair states. , 2007, Physical review letters.
[28] M. Hastings. Entropy and entanglement in quantum ground states , 2007, cond-mat/0701055.
[29] Frank Verstraete,et al. Matrix product state representations , 2006, Quantum Inf. Comput..
[30] G. Vidal. Entanglement renormalization. , 2005, Physical review letters.
[31] J. García-Ripoll. Time evolution algorithms for Matrix Product States and DMRG , 2006, cond-mat/0610210.
[32] F. Verstraete,et al. Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.
[33] F. Verstraete,et al. Ground-state approximation for strongly interacting spin systems in arbitrary spatial dimension. , 2006, Physical review letters.
[34] J. García-Ripoll. Time evolution of Matrix Product States , 2006, cond-mat/0602305.
[35] J. Eisert,et al. Entanglement-area law for general bosonic harmonic lattice systems (14 pages) , 2005, quant-ph/0505092.
[36] F. Verstraete,et al. Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.
[37] Juan José García-Ripoll,et al. Time evolution of Matrix Product States , 2006 .
[38] Pierre Comon,et al. Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..
[39] J. Eisert,et al. Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2004, Physical review letters.
[40] D Porras,et al. Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.
[41] Rasmus Bro,et al. Multi-way Analysis with Applications in the Chemical Sciences , 2004 .
[42] F. Verstraete,et al. Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.
[43] F. Verstraete,et al. Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.
[44] F. Verstraete,et al. Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.
[45] F. Verstraete,et al. Valence-bond states for quantum computation , 2003, quant-ph/0311130.
[46] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[47] M. Martin-Delgado,et al. Stripe ansätze from exactly solved models , 2001, cond-mat/0101458.
[48] Mark Coppejans,et al. Breaking the Curse of Dimensionality , 2000 .
[49] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[50] Stefano Serra Capizzano,et al. Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear , 2000, SIAM J. Matrix Anal. Appl..
[51] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[52] M. Fannes,et al. Abundance of translation invariant pure states on quantum spin chains , 1992 .
[53] M. Fannes,et al. Finitely correlated states on quantum spin chains , 1992 .
[54] Kennedy,et al. Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.
[55] Affleck,et al. Large-n limit of SU(n) quantum "spin" chains. , 1985, Physical review letters.
[56] Antonio Cantoni,et al. Properties of the Eigenvectors of Persymmetric Matrices with Applications to Communication Theory , 1976, IEEE Trans. Commun..
[57] K. Wilson. The renormalization group: Critical phenomena and the Kondo problem , 1975 .
[58] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[59] P. Pfeuty. The one-dimensional Ising model with a transverse field , 1970 .
[60] E. Lieb,et al. Two Soluble Models of an Antiferromagnetic Chain , 1961 .