Single-cell transcriptomic analysis of mouse neocortical development

[1]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[2]  Shuigeng Zhou,et al.  Rainbow-Seq: Combining Cell Lineage Tracing with Single-Cell RNA Sequencing in Preimplantation Embryos , 2018, bioRxiv.

[3]  Li Li,et al.  Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior , 2018, Cell reports.

[4]  James A. Gagnon,et al.  Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain , 2018, Nature Biotechnology.

[5]  Alex A. Pollen,et al.  Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex , 2017, Science.

[6]  P. Kharchenko,et al.  Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain , 2017, Nature Biotechnology.

[7]  J. Reiter,et al.  Genes and molecular pathways underpinning ciliopathies , 2017, Nature Reviews Molecular Cell Biology.

[8]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[9]  Russell B. Fletcher,et al.  Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics , 2017, BMC Genomics.

[10]  S. Durinck,et al.  Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types , 2017, Scientific Reports.

[11]  Yi Zhang,et al.  Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity. , 2017, Cell reports.

[12]  Christoph Hafemeister,et al.  Developmental diversification of cortical inhibitory interneurons , 2017, Nature.

[13]  R. Ransohoff,et al.  Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease , 2017, The Journal of Neuroscience.

[14]  Evan Z. Macosko,et al.  A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types , 2017, Nature Neuroscience.

[15]  Jens Hjerling-Leffler,et al.  Disentangling neural cell diversity using single-cell transcriptomics , 2016, Nature Neuroscience.

[16]  Chandra L. Theesfeld,et al.  Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder , 2016, Nature Neuroscience.

[17]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[18]  Allan R. Jones,et al.  Comprehensive transcriptional map of primate brain development , 2016, Nature.

[19]  Kristel Sleegers,et al.  Genetic variations underlying Alzheimer's disease: evidence from genome-wide association studies and beyond , 2016, The Lancet Neurology.

[20]  Sara B. Linker,et al.  Nuclear RNA-seq of single neurons reveals molecular signatures of activation , 2016, Nature Communications.

[21]  D. Geschwind,et al.  Advancing the understanding of autism disease mechanisms through genetics , 2016, Nature Medicine.

[22]  Giulia Fragola,et al.  Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration , 2016, Nature Communications.

[23]  Julien Prados,et al.  Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex , 2016, Science.

[24]  Alex A. Pollen,et al.  Molecular Identity of Human Outer Radial Glia during Cortical Development , 2015, Cell.

[25]  E. Anton,et al.  Developmental disruptions underlying brain abnormalities in ciliopathies , 2015, Nature Communications.

[26]  V. Tarabykin,et al.  Bcl11a (Ctip1) Controls Migration of Cortical Projection Neurons through Regulation of Sema3c , 2015, Neuron.

[27]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[28]  J. Simon,et al.  Gene Length Matters in Neurons , 2015, Neuron.

[29]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[30]  J. Rinn,et al.  DeCoN: Genome-wide Analysis of In Vivo Transcriptional Dynamics during Pyramidal Neuron Fate Selection in Neocortex , 2015, Neuron.

[31]  Erin Kendall Braun,et al.  Mind matters: Placebo enhances reward learning in Parkinson’s disease , 2014, Nature Neuroscience.

[32]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[33]  Alex A. Pollen,et al.  Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex , 2014, Nature Biotechnology.

[34]  E. Anton,et al.  Decision making during interneuron migration in the developing cerebral cortex. , 2014, Trends in cell biology.

[35]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[36]  A. Chiò,et al.  State of play in amyotrophic lateral sclerosis genetics , 2013, Nature Neuroscience.

[37]  S. Horvath,et al.  Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism , 2013, Cell.

[38]  Wei Niu,et al.  Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism , 2013, Cell.

[39]  J. D. Macklis,et al.  Molecular logic of neocortical projection neuron specification, development and diversity , 2013, Nature Reviews Neuroscience.

[40]  Sharmila Banerjee-Basu,et al.  SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs) , 2013, Molecular Autism.

[41]  Stormy J. Chamberlain,et al.  Topoisomerases facilitate transcription of long genes linked to autism , 2013, Nature.

[42]  B. Finlay,et al.  Modeling Transformations of Neurodevelopmental Sequences across Mammalian Species , 2013, The Journal of Neuroscience.

[43]  J. Ramirez,et al.  Tbr2 Expression in Cajal-Retzius Cells and Intermediate Neuronal Progenitors Is Required for Morphogenesis of the Dentate Gyrus , 2013, The Journal of Neuroscience.

[44]  I. Nookaew,et al.  Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods , 2013, Nucleic acids research.

[45]  R. Hevner,et al.  The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map , 2013, Proceedings of the National Academy of Sciences.

[46]  Lydia Ng,et al.  Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system , 2012, Nucleic Acids Res..

[47]  Y. Yanagawa,et al.  The Fraction of Cortical GABAergic Neurons Is Constant from Near the Start of Cortical Neurogenesis to Adulthood , 2012, The Journal of Neuroscience.

[48]  B. Liu,et al.  Inducible Genetic Lineage Tracing of Cortical Hem Derived Cajal-Retzius Cells Reveals Novel Properties , 2011, PloS one.

[49]  K. Nave,et al.  Neurod1 is essential for the survival and maturation of adult-born neurons , 2009, Nature Neuroscience.

[50]  Arnold Kriegstein,et al.  The glial nature of embryonic and adult neural stem cells. , 2009, Annual review of neuroscience.

[51]  H. Monyer,et al.  Major Signaling Pathways in Migrating Neuroblasts , 2009, Front. Mol. Neurosci..

[52]  T. Sakurai,et al.  Insulin-like growth factor binding protein-7 (IGFBP7) blocks vascular endothelial cell growth factor (VEGF)-induced angiogenesis in human vascular endothelial cells. , 2009, European journal of pharmacology.

[53]  H. Monyer,et al.  Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone , 2008, Proceedings of the National Academy of Sciences.

[54]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[55]  Quanxin Wang,et al.  Multiple Distinct Subtypes of GABAergic Neurons in Mouse Visual Cortex Identified by Triple Immunostaining , 2007, Frontiers in neuroanatomy.

[56]  Jing Chen,et al.  Improved human disease candidate gene prioritization using mouse phenotype , 2007, BMC Bioinformatics.

[57]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[58]  O. Hermanson,et al.  Genetic targeting of principal neurons in neocortex and hippocampus of NEX‐Cre mice , 2006, Genesis.

[59]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[60]  C. Englund,et al.  Pax6, Tbr2, and Tbr1 Are Expressed Sequentially by Radial Glia, Intermediate Progenitor Cells, and Postmitotic Neurons in Developing Neocortex , 2005, The Journal of Neuroscience.

[61]  A. Kriegstein,et al.  Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases , 2004, Nature Neuroscience.

[62]  T. Lufkin,et al.  Expression of Tfap2d, the gene encoding the transcription factor Ap-2 delta, during mouse embryogenesis. , 2003, Gene expression patterns : GEP.

[63]  Kristin L. Whitford,et al.  Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. , 2002, Development.

[64]  SK McConnell,et al.  Regulation of the POU domain gene SCIP during cerebral cortical development , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[66]  E. M. Otis,et al.  Equivalent ages in mouse and human embryos , 1954, The Anatomical record.

[67]  Bonnie Berger,et al.  Enabling Privacy Preserving GWAS in Heterogeneous Human Populations , 2016, RECOMB.

[68]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .

[69]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[70]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.