The structure of internal layers for unstable nonlinear diffusion equations

We study the structure of diffusive layers in solutions of unstable nonlinear diffusion equations. These equations are regularizations of the forward-backward heat equation and have diffusion coefficients that become negative. Such models include the Cahn-Hilliard equation and the pseudoparabolic viscous diffusion equation. Using singular perturbation methods we show that the balance between diffusion and higher-order regularization terms uniquely determines the interface structure in these equations. It is shown that the well-known “equal area” rule for the Cahn-Hilliard equation is a special case of a more general rule for shock construction in the viscous Cahn-Hilliard equation.

[1]  Charles M. Elliott,et al.  The Stefan Problem with a Non-monotone Constitutive Relation , 1985 .

[2]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[4]  G. Caginalp,et al.  Phase-field and sharp-interface alloy models. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Thomas P. Witelski Stopping and merging problems for the porous media equation , 1995 .

[6]  Thomas P. Witelski,et al.  Traveling wave solutions for case II diffusion in polymers , 1996 .

[7]  Irena Pawlow,et al.  A mathematical model of dynamics of non-isothermal phase separation , 1992 .

[8]  G. Rowlands,et al.  Nonlinear Waves, Solitons and Chaos , 1990 .

[9]  P. L. Sachdev,et al.  Asymptotic solutions of a generalized Burgers equation , 1992 .

[10]  Gunduz Caginalp,et al.  Phase Field Models and Sharp Interface Limits: Some Differences in Subtle Situations , 1991 .

[11]  S. Zaleski,et al.  Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow , 1994 .

[12]  G. I. Barenblatt,et al.  A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow , 1993 .

[13]  C. Durning,et al.  Numerical simulation of Case II transport , 1993 .

[14]  Amy Novick-Cohen,et al.  Stable patterns in a viscous diffusion equation , 1991 .

[15]  G. I. Barenblatt,et al.  A mathematical model of turbulent heat and mass transfer in stably stratified shear flow , 1993, Journal of Fluid Mechanics.

[16]  M. Ward,et al.  Metastable internal layer dynamics for the viscous Cahn–Hilliard equation , 1995 .

[17]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[18]  D. Cohen,et al.  Stratified layer formation in particle suspensions , 1985 .

[19]  R. LeVeque Numerical methods for conservation laws , 1990 .

[20]  L. Segel,et al.  Nonlinear aspects of the Cahn-Hilliard equation , 1984 .

[21]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[22]  J. Rubinstein,et al.  Nonlocal reaction−diffusion equations and nucleation , 1992 .

[23]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[24]  Thomas P. Witelski,et al.  Shock Formation in a Multidimensional Viscoelastic Diffusive System , 1995, SIAM J. Appl. Math..

[25]  Thomas P. Witelski Shocks in nonlinear diffusion , 1995 .

[26]  E. Coutsias,et al.  The aging of nuclei in a binary mixture , 1984 .

[27]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  Peter W. Bates,et al.  The Dynamics of Nucleation for the Cahn-Hilliard Equation , 1993, SIAM J. Appl. Math..

[29]  Andrew B. White,et al.  Sharp fronts due to diffusion and viscoelastic relaxation in polymers , 1991 .

[30]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[31]  Andrew B. White,et al.  Sharp fronts due to diffusion and stress at the glass transition in polymers , 1989 .

[32]  Robert W. Cox Shocks in a model for stress-driven diffusion , 1990 .

[33]  K. Höllig Existence of infinitely many solutions for a forward backward heat equation , 1983 .