On the polyhedral lift-and-project methods and the fractional stable set polytope

We study two polyhedral lift-and-project operators (originally proposed by Lovasz and Schrijver in 1991) applied to the fractional stable set polytopes. First, we provide characterizations of all valid inequalities generated by these operators. Then, we present some seven-node graphs on which the operator enforcing the symmetry of the matrix variable is strictly stronger on the odd-cycle polytope of these graphs than the operator without this symmetry requirement. This disproves a conjecture of Liptak and Tuncel from 2003.

[1]  Daniel Bienstock,et al.  Tree-width and the Sherali-Adams operator , 2004, Discret. Optim..

[2]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[3]  Tamon Stephen,et al.  On a Representation of the Matching Polytope Via Semidefinite Liftings , 1999, Math. Oper. Res..

[4]  Michel X. Goemans,et al.  When Does the Positive Semidefiniteness Constraint Help in Lifting Procedures? , 2001, Math. Oper. Res..

[6]  Nil. I. Fcbniary ON THE MATRIX-CUT RANK OF POLYHEDRA , 2005 .

[7]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[8]  S. K. Mishra,et al.  Nonconvex Optimization and Its Applications , 2008 .

[9]  Javier Peña,et al.  Computing the Stability Number of a Graph Via Linear and Semidefinite Programming , 2007, SIAM J. Optim..

[10]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[11]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[12]  László Lovász,et al.  Critical Facets of the Stable Set Polytope , 2001, Comb..

[13]  Daniel Bienstock,et al.  Subset Algebra Lift Operators for 0-1 Integer Programming , 2004, SIAM J. Optim..

[14]  Gérard Cornuéjols,et al.  Elementary closures for integer programs , 2001, Oper. Res. Lett..

[15]  Levent Tunçel,et al.  The stable set problem and the lift-and-project ranks of graphs , 2003, Math. Program..

[16]  Béla Bollobás,et al.  Proving Integrality Gaps without Knowing the Linear Program , 2006, Theory Comput..

[17]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[18]  Hanif D. Sherali,et al.  Tighter Representations for Set Partitioning Problems , 1996, Discret. Appl. Math..

[19]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[20]  Gérard Cornuéjols,et al.  Valid inequalities for mixed integer linear programs , 2007, Math. Program..

[21]  Etienne de Klerk,et al.  Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..

[22]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[23]  Graciela L. Nasini,et al.  Lift and project relaxations for the matching and related polytopes , 2004, Discret. Appl. Math..