Visualizing organelles with recombinant fluorescent proteins in the white-rot fungus Pleurotus ostreatus.

[1]  Xueming Zhu,et al.  The COPII subunit MoSec24B is involved in development, pathogenicity and autophagy in the rice blast fungus , 2023, Frontiers in Plant Science.

[2]  Y. Honda,et al.  Molecular breeding of sporeless strains of Pleurotus ostreatus using a non-homologous DNA end-joining defective strain , 2021, Mycological Progress.

[3]  A. Pisabarro,et al.  Glucose counteracts wood-dependent induction of lignocellulolytic enzyme secretion in monokaryon and dikaryon submerged cultures of the white-rot basidiomycete Pleurotus ostreatus , 2020, Scientific Reports.

[4]  G. Diallinas,et al.  Translocation of nutrient transporters to cell membrane via Golgi bypass in Aspergillus nidulans , 2020, EMBO reports.

[5]  Fernanda L. Fonseca,et al.  Erg6 affects membrane composition and virulence of the human fungal pathogen Cryptococcus neoformans. , 2020, Fungal genetics and biology : FG & B.

[6]  J. F. Díaz,et al.  Identification of the guanine nucleotide exchange factor for SAR1 in the filamentous fungal model Aspergillus nidulans. , 2019, Biochimica et biophysica acta. Molecular cell research.

[7]  G. van den Bogaart,et al.  Stx5-Mediated ER-Golgi Transport in Mammals and Yeast , 2019, Cells.

[8]  A. Hoelz,et al.  The Structure of the Nuclear Pore Complex (An Update). , 2019, Annual review of biochemistry.

[9]  Y. Honda,et al.  Dominant effects of gat1 mutations on the ligninolytic activity of the white-rot fungus Pleurotus ostreatus. , 2019, Fungal biology.

[10]  Miguel Hernández-González,et al.  COPI localizes to the early Golgi in Aspergillus nidulans. , 2019, Fungal genetics and biology : FG & B.

[11]  T. Salame,et al.  Effects of cre1 modification in the white-rot fungus Pleurotus ostreatus PC9: altering substrate preference during biological pretreatment , 2018, Biotechnology for Biofuels.

[12]  Takashi Watanabe,et al.  Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls , 2018, Scientific Reports.

[13]  M. Himmel,et al.  Distinct roles of N- and O-glycans in cellulase activity and stability , 2017, Proceedings of the National Academy of Sciences.

[14]  Y. Isagi,et al.  Effects of pex1 disruption on wood lignin biodegradation, fruiting development and the utilization of carbon sources in the white-rot Agaricomycete Pleurotus ostreatus and non-wood decaying Coprinopsis cinerea. , 2017, Fungal genetics and biology : FG & B.

[15]  H. Muraguchi,et al.  The Coprinopsis cinerea Tup1 homologue Cag1 is required for gill formation during fruiting body morphogenesis , 2016, Biology Open.

[16]  Y. Honda,et al.  Marker recycling via 5-fluoroorotic acid and 5-fluorocytosine counter-selection in the white-rot agaricomycete Pleurotus ostreatus. , 2016, Fungal biology.

[17]  Areti Pantazopoulou The Golgi apparatus: insights from filamentous fungi , 2016, Mycologia.

[18]  J. Wagener,et al.  Mitochondrial dynamics in the pathogenic mold Aspergillus fumigatus: therapeutic and evolutionary implications , 2015, Molecular microbiology.

[19]  Youping Chen,et al.  Cellulose-hemicellulose interaction in wood secondary cell-wall , 2015 .

[20]  D. Hagiwara,et al.  Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans , 2015, Eukaryotic Cell.

[21]  Miguel Hernández-González,et al.  Conditional inactivation of Aspergillus nidulans sarASAR1 uncovers the morphogenetic potential of regulating endoplasmic reticulum (ER) exit , 2015, Molecular microbiology.

[22]  Masahiro Samejima,et al.  Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood , 2014, PLoS genetics.

[23]  R. D. de Vries,et al.  Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes , 2014, Microbiology and Molecular Reviews.

[24]  M. Roncero,et al.  The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence , 2013, PloS one.

[25]  H. Arst,et al.  Acute inactivation of the Aspergillus nidulans Golgi membrane fusion machinery: correlation of apical extension arrest and tip swelling with cisternal disorganization , 2013, Molecular microbiology.

[26]  T. Cajthaml,et al.  Transcriptional response of lignin-degrading enzymes to 17α-ethinyloestradiol in two white rots , 2012, Microbial biotechnology.

[27]  R. Hirata,et al.  High-curvature domains of the ER are important for the organization of ER exit sites in Saccharomyces cerevisiae , 2012, Journal of Cell Science.

[28]  T. Salame,et al.  Predominance of a Versatile-Peroxidase-Encoding Gene, mnp4, as Demonstrated by Gene Replacement via a Gene Targeting System for Pleurotus ostreatus , 2012, Applied and Environmental Microbiology.

[29]  H. Kang,et al.  Unraveling Unique Structure and Biosynthesis Pathway of N-Linked Glycans in Human Fungal Pathogen Cryptococcus neoformans by Glycomics Analysis* , 2012, The Journal of Biological Chemistry.

[30]  A. Salamov,et al.  Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis , 2012, Proceedings of the National Academy of Sciences.

[31]  A. Gladfelter,et al.  Heterogeneity in Mitochondrial Morphology and Membrane Potential Is Independent of the Nuclear Division Cycle in Multinucleate Fungal Cells , 2012, Eukaryotic Cell.

[32]  J. Heitman,et al.  Association of Calcineurin with the COPI Protein Sec28 and the COPII Protein Sec13 Revealed by Quantitative Proteomics , 2011, PloS one.

[33]  A. Ram,et al.  Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi , 2011, Applied Microbiology and Biotechnology.

[34]  O. Singh,et al.  Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘Biofuel’ , 2011, Applied Microbiology and Biotechnology.

[35]  M. Minami,et al.  Transcriptional effect of a calmodulin inhibitor, W-7, on the ligninolytic enzyme genes in Phanerochaete chrysosporium , 2010, Current Genetics.

[36]  B. Glick,et al.  The yeast Golgi apparatus: Insights and mysteries , 2009, FEBS letters.

[37]  M. Peñalva,et al.  Organization and dynamics of the Aspergillus nidulans Golgi during apical extension and mitosis. , 2009, Molecular biology of the cell.

[38]  H. Wösten,et al.  Genomic and Biochemical Analysis of N Glycosylation in the Mushroom-Forming Basidiomycete Schizophyllum commune , 2009, Applied and Environmental Microbiology.

[39]  G. Steinberg,et al.  Dynamic rearrangement of nucleoporins during fungal "open" mitosis. , 2007, Molecular biology of the cell.

[40]  T. Gerngross,et al.  N-Glycan Modification in Aspergillus Species , 2007, Applied and Environmental Microbiology.

[41]  K. Kitamoto,et al.  Dissecting cellular components of the secretory pathway in filamentous fungi: insights into their application for protein production , 2007, Biotechnology Letters.

[42]  J. Holthuis,et al.  Lipid traffic: floppy drives and a superhighway , 2005, Nature Reviews Molecular Cell Biology.

[43]  J. Bonifacino,et al.  The Mechanisms of Vesicle Budding and Fusion , 2004, Cell.

[44]  A. Conesa,et al.  Studies on the Production of Fungal Peroxidases inAspergillus niger , 2000, Applied and Environmental Microbiology.

[45]  B. Guiard,et al.  An internal targeting signal directing proteins into the mitochondrial intermembrane space. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Gúmer Pérez,et al.  Molecular Karyotype of the White Rot FungusPleurotus ostreatus , 1999, Applied and Environmental Microbiology.

[47]  P. S. Rao,et al.  Carbohydrate Metabolism During Morphogenesis of Coprinus lagopus (sensu Buller) , 1969, Journal of bacteriology.

[48]  I. Boldogh,et al.  Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast. , 2016, Methods in molecular biology.

[49]  Y. Baba,et al.  Pretreatment of Japanese cedar wood by white rot fungi and ethanolysis for bioethanol production. , 2011 .

[50]  Toshi-hide Arima,et al.  The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. , 2001, Genetics.