Radiative Heating Uncertainty for Hyperbolic Earth Entry, Part 1: Flight Simulation Modeling and Uncertainty

This paper investigates the shock-layer radiative heating uncertainty for hyperbolic Earth entry, with the main focus being a Mars return. A baseline simulation approach involving the LAURA Navier–Stokes code with coupled ablation and radiation is presented, with the HARA radiation code being used for the radiation predictions. Flight cases representative of peak heatingMars or asteroid return are defined, and the strong influence of coupled ablation and radiation on their aerothermodynamic environments are shown. Structural uncertainties inherent in the baseline simulations are identified,with turbulencemodeling, precursor absorption, grid convergence, and radiation transport uncertainties combining for a 34 and 24% structural uncertainty on the radiative heating. A parametric uncertainty analysis, which assumes interval uncertainties, is presented. This analysis accounts for uncertainties in the radiation models, as well as heat of formation uncertainties in the flowfield model. Discussions and references are provided to support the uncertainty range chosen for each parameter. A parametric uncertainty of 47 and 28% is computed for the stagnation-point radiative heating for the 15 km=s Mars-return case. A breakdown of the largest individual uncertainty contributors is presented, which includes C3 Swings cross section, photoionization edge shift, and Opacity Project atomic lines. Combining the structural and parametric uncertainty components results in a total uncertainty of 81 and 52% for the Mars-return case.

[1]  K. Sutton Fully coupled nongray radiating gas flows with ablation product effects about planetary entry bodies. , 1973 .

[2]  K. Berrington,et al.  Photoionization of the 4So ground state of atomic nitrogen and atomic nitrogen 4So−4P oscillator strengths , 1991 .

[3]  P. V. Marrone,et al.  Measurement of atomic nitrogen and carbon photoionization cross sections using shock tube vacuum ultraviolet spectrometry , 1971 .

[4]  Sanford Gordon,et al.  NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species , 2002 .

[5]  Yuri Ralchenko,et al.  NIST Atomic Spectra Database , 2000 .

[6]  R. Svehla,et al.  Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures , 1962 .

[7]  B. Hollis,et al.  Spectrum Modeling for Air Shock-Layer Radiation at Lunar-Return Conditions , 2008 .

[8]  J. J. Jones,et al.  Radiative flux penetration through a blown shock layer for Jupiter entry conditions , 1978 .

[9]  M. Wright,et al.  Recommended Collision Integrals for Transport Property Computations Part 1: Air Species , 2005 .

[10]  K. K. Yoshikawa ANALYSIS OF RADIATIVE HEAT TRANSFER FOR LARGE OBJECTS AT METEORIC SPEEDS , 1967 .

[11]  Peter A. Gnoffo,et al.  Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability , 2013 .

[12]  R. A. Thompson,et al.  The addition of algebraic turbulence modeling to program LAURA , 1993 .

[13]  Kenji Ito,et al.  Line Oscillator Strength Measurements in the 0-0 Band of the c′4 1Σu+ ← X 1Σg+ Transition of N2 , 2000 .

[14]  P. Jacobs,et al.  Numerical modelling of radiating superorbital flows , 2003 .

[15]  M. Dudeck,et al.  Arrays of radiative transition probabilities for CO2–N2 plasmas , 2006 .

[16]  W. Fabian,et al.  Experimentally determined oscillator strengths for molecular hydrogen—I. The Lyman and Werner bands above 900Å , 1974 .

[17]  J. P. Appleton,et al.  Vacuum‐Ultraviolet Absorption of Shock‐Heated Vibrationally Excited Nitrogen , 1967 .

[18]  L. Carlson,et al.  Effects of shock wave precursors ahead of hypersonic entry vehicles , 1992 .

[19]  J. J. Jones The optical absorption of triatomic carbon C3 for the wavelength range 260 to 560 nm , 1978 .

[20]  David M. Driver,et al.  Radiation of Spalled Particles in Shock Layers , 2004 .

[21]  Deepak Bose,et al.  Probabilistic Modeling of Aerothermal and Thermal Protection Material Response Uncertainties , 2007 .

[22]  C. Goldbach,et al.  Oscillator strength measurements in the vacuum-ultraviolet. V : Neutral nitrogen lines in the 950-1200 Å range , 1992 .

[23]  G. Palmer,et al.  Direct Coupling of the NEQAIR Radiation and DPLR CFD Codes , 2010 .

[24]  Todd White,et al.  Direct Coupling of the NEQAIR Radiation and DPLR CFD Codes , 2011 .

[25]  Christopher O. Johnston,et al.  Characterization of Stagnation-Point Heat Flux for Earth Entry , 2014 .

[26]  J. Morris,et al.  The continuum radiation of oxygen and nitrogen for use in plasma temperature determination , 1966 .

[27]  Christopher O. Johnston,et al.  Uncertainty Analysis of Air Radiation for Lunar Return Shock Layers , 2008 .

[28]  James N. Moss,et al.  Turbulent Radiating Shock Layers with Coupled Ablation Injection , 1980 .

[29]  Chul Park,et al.  Stagnation-Region Heating Environment of the Galileo Probe , 2008 .

[30]  P. Rini,et al.  Elemental Demixing in Air and Carbon Dioxide Stagnation Line Flows , 2004 .

[31]  Peter A. Gnoffo,et al.  The Influence of Ablation on Radiative Heating for Earth Entry , 2009 .

[32]  Wolfgang L. Wiese,et al.  ATOMIC TRANSITION PROBABILITIES. VOLUME 1. HYDROGEN THROUGH NEON , 1966 .

[33]  M. Kock,et al.  Plasma diagnostics based on self-reversed lines. II: Application to nitrogen, carbon and oxygen arc measurements in the vacuum ultraviolet , 1992 .

[34]  Ethiraj Venkatapathy,et al.  Computational Aerothermodynamic Design Issues for Hypersonic Vehicles , 1997 .

[35]  Michael S. Eldred,et al.  Epistemic Uncertainty in the Calculation of Margins , 2009 .

[36]  R. Pike,et al.  Ablation and Radiation Coupled Viscous Hypersonic Shock Layers. (Volumes I and II). , 1971 .

[37]  G. S. Romanov,et al.  Thermodynamic and optical properties of gases in a wide range of parameters , 1995 .

[38]  L. B. Garrett,et al.  An implicit finite-difference solution to the viscous shock layer, including the effects of radiation and strong blowing , 1972 .

[39]  T. Schmidt,et al.  Oscillator strengths and radiative lifetimes for C2: Swan, Ballik-Ramsay, Phillips, and dΠg3←cΣu+3 systems , 2007 .

[40]  Frank S. Milos,et al.  Computational equations for radiating and ablating shock layers , 1990 .

[41]  Anthony M. Calomino,et al.  An Overview of Technology Investments in the NASA Entry Systems Modeling Project , 2015 .

[42]  William L. Barr,et al.  Spectral Line Broadening by Plasmas , 1975, IEEE Transactions on Plasma Science.

[43]  D. M. Cooper,et al.  An experimental determination of the cross section of the Swings band system of C3 , 1979 .

[44]  Alireza Mazaheri,et al.  A Study of Ablation-Flowfield Coupling Relevant to the Orion Heatshield , 2012 .

[45]  Veres,et al.  Atomic transition probabilities and tests of the spectroscopic coupling scheme for N I. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[46]  Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle , 1994 .

[47]  Alireza Mazaheri,et al.  LAURA Users Manual: 5.3-48528 , 2010 .

[48]  Christopher O. Johnston,et al.  Radiative Heating Uncertainty for Hyperbolic Earth Entry, Part 2: Comparisons with 1960s-Era Shock-Tube Measurements , 2013 .

[49]  Anil K. Pradhan,et al.  Electron-Ion Recombination Rate Coefficients, Photoionization Cross Sections, and Ionization Fractions for Astrophysically Abundant Elements. II. Oxygen Ions , 1999 .

[50]  C. E. Brion,et al.  Absolute optical oscillator strengths for discrete and continuum photoabsorption of molecular nitrogen (11–200 eV) , 1993 .

[51]  Akihiro Sasoh,et al.  Parallel computation of fully coupled hypersonic radiating flowfield using multiband model , 2003 .

[52]  Peter A. Gnoffo,et al.  Implementation of Radiation, Ablation, and Free Energy Minimization in Hypersonic Simulations , 2010 .

[53]  K. Sutton Characteristics of Coupled Nongray Radiating Gas Flows with Ablation Product Effects About Blunt Bodies During Planetary Entries. Ph.D. Thesis - North Carolina State Univ. , 1973 .

[54]  Wolfgang L. Wiese,et al.  Atomic Transition Probabilities , 1991 .

[55]  Alireza Mazaheri,et al.  Assessment of Radiative Heating Uncertainty for Hyperbolic Earth Entry , 2011 .

[56]  Optical absorption of carbon and hydrocarbon species from shock heated acetylene and methane in the 135-220 nm wavelength range , 1981 .

[57]  M. Wright,et al.  Recommended Collision Integrals for Transport Property Computations Part 2: Mars and Venus Entries , 2007 .

[58]  James N. Moss,et al.  Radiative Viscous-Shock-Layer Solutions with Coupled Ablation Injection , 1976 .

[59]  V. Helbig,et al.  Stark-broadening study of neutral nitrogen lines , 1976 .

[60]  C. Park,et al.  Nonequilibrium Air Radiation (NEQAIR) Program , 1985 .

[61]  Diffusion model comparisons for direct reentry applications , 2003 .

[62]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[63]  D. R. Inglis,et al.  Ionic Depression of Series Limits in One-Electron Spectra. , 1939 .

[64]  Kathryn E. Wurster,et al.  Entry Trajectory and Aeroheating Environment Definition for Capsule-Shaped Vehicles , 2009 .

[65]  L. D’yachkov,et al.  Studies of continuum radiation from nitrogen, oxygen and carbon dioxide plasmas in the vacuum ultraviolet region , 1978 .

[66]  Wolfgang L. Wiese,et al.  Atomic Transition Probabilities for Carbon, Nitrogen and Oxygen , 1996 .

[67]  A. L. Simmonds,et al.  Galileo probe forebody flowfield predictions during Jupiter entry , 1982 .

[68]  C. Park Injection-induced turbulence in stagnation-point boundary layers , 1984 .

[69]  L. Brewer,et al.  Spectrum of C3 , 1962 .

[70]  B. Lewis Experimentally-determined oscillator strengths for molecular hydrogen—II. The Lyman and Werner bands below 900 Å, the B′-X and the D-X bands , 1974 .

[71]  R. Goulard,et al.  EQUILIBRIUM RADIATION FROM ISOTHERMAL HYDROGEN--HELIUM PLASMAS. , 1968 .

[72]  Emission and Ablation of a Large Meteoroid in the Course of Its Motion through the Earth's Atmosphere , 1996 .

[73]  Christopher O. Johnston,et al.  Uncertainty Analysis of Air Radiation for Lunar-Return Shock Layers , 2012 .

[74]  Kam-Pui Lee,et al.  Viscous shock-layer solutions with coupled radiation and ablation for earth entry , 1992 .

[75]  G. Palmer,et al.  Uncertainty Analysis of CEV LEO and Lunar Return Entries , 2007 .

[76]  Yih-Kanq Chen,et al.  Monte Carlo Analysis for Spacecraft Thermal Protection System Design , 2006 .

[77]  D. M. Cooper,et al.  Line-by-line transport calculations for Jupiter entry probes. [of radiative transfer] , 1979 .

[78]  Michel Godefroid,et al.  New accurate transition probabilities for astrophysically important spectral lines of neutral nitrogen , 1991 .

[79]  H. A. Hassan,et al.  Radiation transport around axisymmetric blunt body vehicles using a modified differential approximation , 1992 .

[80]  J. H. Chin,et al.  Radiation transport for stagnation flows including effects of lines and ablation layer. , 1969 .

[81]  L. F. Hearne,et al.  Effects of environmental and ablator performance uncertainties on heat-shielding requirements for hyperbolic entry vehicles. , 1968 .

[82]  V. Carter High‐Resolution N2 Absorption Study from 730 to 980 Å , 1972 .

[83]  V. V. Shuvalov,et al.  Radiation emitted during the flight of asteroids and comets through the atmosphere , 1994 .

[84]  J. Morris,et al.  Measurement of the Radiation Emitted f Values and Stark Half-Widths for the Strong Vacuum Ultraviolet Lines of O I and N I , 1969 .

[85]  P. Gnoffo,et al.  Multi-Component Diffusion With Application to Computational Aerothermodynamics , 1998 .

[86]  Philippe Rivière,et al.  Spectroscopic data for the prediction of radiative transfer in CO2–N2 plasmas , 2009 .

[87]  Variation of the Van Driest damping parameter with mass transfer. , 1973 .

[88]  Harry Partridge,et al.  Chemical-kinetic parameters of hyperbolic Earth entry , 2000 .

[89]  Roy H. Stogner,et al.  Loose-coupling algorithm for simulating hypersonic flows with radiation and ablation , 2011 .

[90]  T. Schmidt,et al.  Oscillator strengths of the Mulliken, Swan, Ballik-Ramsay, Phillips, and d3Pi g<--c 3Sigma u+ systems of C2 calculated by MRCI methods utilizing a biorthogonal transformation of CASSCF orbitals. , 2007, The Journal of chemical physics.

[91]  S. Langhoff,et al.  Theoretical study of the first and second negative systems of N+2 , 1988 .

[92]  L. E. Lasher,et al.  Convective and radiative heat transfer to an ablating body, part I Final report , 1966 .

[93]  Andrew J. Brune,et al.  Uncertainty Analysis of Mars Entry Flows over a Hypersonic Inflatable Aerodynamic Decelerator , 2015 .

[94]  O. Živný,et al.  Database system of thermodynamic properties of individual substances at high temperatures , 2005 .

[95]  Charles H. Kruger,et al.  Arrays of radiative transition probabilities for the N2 first and second positive, no beta and gamma, N+2 first negative, and O2 Schumann-Runge band systems , 1992 .

[96]  S. Tayal Resonant photoionization cross sections and branching ratios for atomic oxygen , 2002 .

[97]  W. E. Nicolet,et al.  Spectral absorption coefficients of carbon, nitrogen and oxygen atoms , 1967 .

[98]  Vladik Kreinovich,et al.  A new Cauchy-based black-box technique for uncertainty in risk analysis , 2004, Reliab. Eng. Syst. Saf..

[99]  A. Goly,et al.  Stark broadening of some C(I) and N(I) vacuum ultraviolet lines , 1986 .

[100]  W. Nicolet Advanced methods for calculating radiation transport in ablation-product contaminated boundary layers , 1970 .

[101]  Soon,et al.  Nitrogen-plasma continuum emission associated with N-(3P) and N-(1D) ions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[102]  V. K. Vertushkin,et al.  Role of the absorption of radiation ahead of a shock wave with hypersonic flow around a blunt body , 1970 .

[103]  D. M. Cooper Spectral intensity measurements from high-pressure nitrogen plasmas. , 1972 .

[104]  W. Menard,et al.  Measurements of the Continuum and Atomic Line Radiation from High-Temperature Air , 1967 .

[105]  Chul Park Interaction of Spalled Particles with Shock Layer Flow , 1999 .

[106]  R. Anderson,et al.  Structure and luminosity of strong shock waves in air , 1973 .

[107]  J. Bueche Effects of improvements and uncertainties in thermophysical properties on carbon phenolic heatshield thermal performance predictions , 1977 .

[108]  Grant Palmer,et al.  Earth atmospheric entry studies for manned Mars missions , 1990 .

[109]  C. Johnston Improved Exponential Integral Approximation for Tangent-Slab Radiation Transport , 2010 .

[110]  J. Pomerantz The influence of the absorption of radiation in shock tube phenomena , 1961 .

[111]  High-temperature thermodynamic properties of Mars-atmosphere components , 2005 .

[112]  C. Johnston,et al.  Features of Afterbody Radiative Heating for Earth Entry , 2015 .

[113]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[114]  Christopher O. Johnston,et al.  Nonequilibrium Shock-Layer Radiative Heating for Earth and Titan Entry , 2006 .

[115]  H. Nubbemeyer Experimental ion contribution to the Stark broadening of neutral-nitrogen spectral lines in the vacuum uv , 1980 .

[116]  Effect of shock precursor heating on radiative flux to blunt bodies , 1969 .

[117]  A. C. Allison,et al.  Band oscillator strengths and transition probabilities for the Lyman and Werner systems of H2, HD, and D2 , 1969 .

[118]  S. Nahar Photoionization cross sections and oscillator strengths for oxygen ions: O I-O VII , 1998 .