Fabrication and lasing characteristics of 1.3‐μm InGaAsP multiquantum‐well lasers
暂无分享,去创建一个
Y. Sasai | M. Ogura | N. Hase | T. Kajiwara
[1] Y. Sasai,et al. A 1.3 µm InGaAsP/InP Multiquantum Well Laser Grown by LPE , 1985 .
[2] M. Ogura,et al. InGaAsP/InP multiquantum-well structure grown by MOCVD , 1985 .
[3] D. C. Craft,et al. Gain measurements in InGaAsP multiquantum well lasers , 1985 .
[4] R. L. Brown,et al. 1.3 μm InGaAsP DCPBH multiquantum-well lasers , 1984 .
[5] R. Olshansky,et al. Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources , 1984 .
[6] Masahiro Asada,et al. Gain and intervalence band absorption in quantum-well lasers , 1984 .
[7] H. Nakashima,et al. GaAlAs buried multi-quantum-well laser fabricated by diffusion induced disordering , 1984, 1983 International Electron Devices Meeting.
[8] W. Tsang. Ga0.47In0.53As/InP multiquantum well heterostructure lasers grown by molecular beam epitaxy operating at 1.53 μm , 1984 .
[9] R. Lang,et al. 1.3 μm InGaAsP/InP multiquantum-well lasers grown by vapour-phase epitaxy , 1983 .
[10] N. Dutta. Current injection in multiquantum well lasers , 1983 .
[11] K. Otsuka,et al. Polarisation-dependent gain-current relationship in GaAs-AlGaAs MQW laser diodes , 1983 .
[12] Niloy K. Dutta,et al. Calculation of Auger rates in a quantum well structure and its application to InGaAsP quantum well lasers , 1983 .
[13] Niloy K. Dutta,et al. Calculated threshold current of GaAs quantum well lasers , 1982 .
[14] Won-Tien Tsang,et al. Ultra-low threshold, graded-index waveguide, separate confinement, CW buried-heterostructure lasers , 1982 .
[15] Won-Tien Tsang,et al. Extremely low threshold (AlGa)As modified multiquantum well heterostructure lasers grown by molecular‐beam epitaxy , 1981 .
[16] Shinichi Takahashi. Influence of supersaturated melt for InP growth on InP‐InGaAsP interface of double‐heterostructure laser wafers , 1981 .
[17] Akira Sugimura,et al. Band‐to‐band Auger recombination in InGaAsP lasers , 1981 .
[18] H. Imai,et al. Analysis of threshold temperature characteristics for InGaAsP/InP double heterojunction lasers , 1981 .
[19] N. Dutta,et al. Temperature dependence of threshold of InGaAsP/InP double‐heterostructure lasers and Auger recombination , 1981 .
[20] H. Nagai,et al. LPE growth of 1.5–1.6 μm In1−xGaxAs1−yPy crystals by a modified source-seed method , 1981 .
[21] Masahiro Asada,et al. The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption , 1980 .
[22] Karl Hess,et al. Temperature dependence of threshold current for a quantum-well heterostructure laser , 1980 .
[23] Nick Holonyak,et al. Temperature dependence of threshold current for coupled multiple quantum‐well In1−xGax P1−zAsz‐InP heterostructure laser diodes , 1980 .
[24] Hitoshi Kawaguchi,et al. Room-temperature c.w. operation of InP/InGaAsP/InP double heterostructure diode lasers emitting at 1.55 μm , 1979 .
[25] Y. Matsushima,et al. Room temperature c.w. operation of InGaAsP/InP heterostructure lasers emitting at 1.56 μm , 1979 .
[26] Shigehisa Arai,et al. Low Threshold Current Density (100) GaInAsP/InP Double-Heterostructure Lasers for Wavelength 1.3 µm , 1979 .
[27] B. Hakki,et al. Gain spectra in GaAs double−heterostructure injection lasers , 1975 .
[28] T. Ikegami,et al. Reflectivity of mode at facet and oscillation mode in double-heterostructure injection lasers , 1972 .