Fabrication and lasing characteristics of 1.3‐μm InGaAsP multiquantum‐well lasers

This paper reports the fabrication and lasing characteristics of 1.3‐μm InGaAsP multiquantum‐well (MQW) buried heterostructure (BH) lasers grown by liquid‐phase epitaxy (LPE) technique. The MQW active region consists of five InGaAsP well layers (λg=1.3‐μm, Lz∼200 A and InGaAsP barrier layers (λg=1.1 μm, d∼400–600 A). These lasers have threshold currents of 15–20 mA at 25 °C, external quantum efficiencies of 50% at 25 °C, and T0 values of 130–145 °K in the temperature range of less than 300 °K. The beam divergences perpendicular and parallel to the junction plane were in the narrow range of 10–13°. Furthermore, the polarization‐dependent gain‐current relationship between the TE and TM mode of InGaAsP MQW lasers has been investigated in detail for the first time.

[1]  Y. Sasai,et al.  A 1.3 µm InGaAsP/InP Multiquantum Well Laser Grown by LPE , 1985 .

[2]  M. Ogura,et al.  InGaAsP/InP multiquantum-well structure grown by MOCVD , 1985 .

[3]  D. C. Craft,et al.  Gain measurements in InGaAsP multiquantum well lasers , 1985 .

[4]  R. L. Brown,et al.  1.3 μm InGaAsP DCPBH multiquantum-well lasers , 1984 .

[5]  R. Olshansky,et al.  Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources , 1984 .

[6]  Masahiro Asada,et al.  Gain and intervalence band absorption in quantum-well lasers , 1984 .

[7]  H. Nakashima,et al.  GaAlAs buried multi-quantum-well laser fabricated by diffusion induced disordering , 1984, 1983 International Electron Devices Meeting.

[8]  W. Tsang Ga0.47In0.53As/InP multiquantum well heterostructure lasers grown by molecular beam epitaxy operating at 1.53 μm , 1984 .

[9]  R. Lang,et al.  1.3 μm InGaAsP/InP multiquantum-well lasers grown by vapour-phase epitaxy , 1983 .

[10]  N. Dutta Current injection in multiquantum well lasers , 1983 .

[11]  K. Otsuka,et al.  Polarisation-dependent gain-current relationship in GaAs-AlGaAs MQW laser diodes , 1983 .

[12]  Niloy K. Dutta,et al.  Calculation of Auger rates in a quantum well structure and its application to InGaAsP quantum well lasers , 1983 .

[13]  Niloy K. Dutta,et al.  Calculated threshold current of GaAs quantum well lasers , 1982 .

[14]  Won-Tien Tsang,et al.  Ultra-low threshold, graded-index waveguide, separate confinement, CW buried-heterostructure lasers , 1982 .

[15]  Won-Tien Tsang,et al.  Extremely low threshold (AlGa)As modified multiquantum well heterostructure lasers grown by molecular‐beam epitaxy , 1981 .

[16]  Shinichi Takahashi Influence of supersaturated melt for InP growth on InP‐InGaAsP interface of double‐heterostructure laser wafers , 1981 .

[17]  Akira Sugimura,et al.  Band‐to‐band Auger recombination in InGaAsP lasers , 1981 .

[18]  H. Imai,et al.  Analysis of threshold temperature characteristics for InGaAsP/InP double heterojunction lasers , 1981 .

[19]  N. Dutta,et al.  Temperature dependence of threshold of InGaAsP/InP double‐heterostructure lasers and Auger recombination , 1981 .

[20]  H. Nagai,et al.  LPE growth of 1.5–1.6 μm In1−xGaxAs1−yPy crystals by a modified source-seed method , 1981 .

[21]  Masahiro Asada,et al.  The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption , 1980 .

[22]  Karl Hess,et al.  Temperature dependence of threshold current for a quantum-well heterostructure laser , 1980 .

[23]  Nick Holonyak,et al.  Temperature dependence of threshold current for coupled multiple quantum‐well In1−xGax P1−zAsz‐InP heterostructure laser diodes , 1980 .

[24]  Hitoshi Kawaguchi,et al.  Room-temperature c.w. operation of InP/InGaAsP/InP double heterostructure diode lasers emitting at 1.55 μm , 1979 .

[25]  Y. Matsushima,et al.  Room temperature c.w. operation of InGaAsP/InP heterostructure lasers emitting at 1.56 μm , 1979 .

[26]  Shigehisa Arai,et al.  Low Threshold Current Density (100) GaInAsP/InP Double-Heterostructure Lasers for Wavelength 1.3 µm , 1979 .

[27]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[28]  T. Ikegami,et al.  Reflectivity of mode at facet and oscillation mode in double-heterostructure injection lasers , 1972 .