Structural influence on the electronic properties of methoxy substituted polyaniline/aluminum Schottky barrier diodes

[1]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[2]  J. Tauc,et al.  Amorphous and liquid semiconductors , 1974 .

[3]  J. Tsukamoto,et al.  Characteristics of Schottky barrier solar cells using polyacetylene, (CH)x , 1982 .

[4]  Stuart I. Yaniger,et al.  “Polyaniline”: Interconversion of Metallic and Insulating Forms , 1985 .

[5]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .

[6]  D. Moses,et al.  High electrical conductivity in doped polyacetylene , 1987, Nature.

[7]  J. Lacroix,et al.  Electrolyte Effects on the Switching Reaction of Polyaniline , 1988 .

[8]  A. Heeger,et al.  Metal-polymer Schottky barriers on processible polymers , 1989 .

[9]  D. Fichou,et al.  Conjugated polymers and oligomers as active material for electronic devices , 1989 .

[10]  J. Yue,et al.  Sulfonic acid ring-substituted polyaniline, a self-doped conducting polymer , 1990 .

[11]  N. Lewis,et al.  Electronic properties of junctions between silicon and organic conducting polymers , 1990, Nature.

[12]  B. D. Malhotra,et al.  Metal/semiconductive polymer Schottky device , 1991 .

[13]  M. Rubner,et al.  Formation of rectifying contacts to Langmuir-Blodgett films of poly(3-hexylthiophene) , 1991 .

[14]  C. R. Martin,et al.  A new interfacial polymerization method for forming metal/ conductive polymer Schottky barriers , 1992 .

[15]  B. D. Malhotra,et al.  Some recent studies on metal/polyaniline schottky devices , 1992 .

[16]  B. D. Malhotra,et al.  Vacuum‐deposited metal/polyaniline Schottky device , 1992 .

[17]  M. Leclerc,et al.  Stabilization and characterization of pernigraniline salt: the "acid-doped" form of fully oxidized polyanilines , 1992 .

[18]  A. Bard,et al.  The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions , 1992 .

[19]  V. I. Krinichnyi,et al.  Schottky diodes based on poly(p-phenylene) and poly(1,4-dipyrrolobenzene) , 1993 .

[20]  D. B. Hibbert,et al.  Chemical and electrochemical syntheses, and characterization of poly(2,5-dimethoxyaniline) (PDMA): a novel, soluble, conducting polymer , 1994 .

[21]  O. Inganäs,et al.  The electrical properties of junctions between aluminium and doped polypyrrole , 1996 .

[22]  C. Nicolini,et al.  The electrochromic response of polyaniline and its copolymeric systems , 1997 .

[23]  O. Inganäs,et al.  Electronic properties of junctions between aluminum and neutral or doped poly[3-(4-octylphenyl)-2,2′-bimiophene] , 1997 .

[24]  J. Kumar,et al.  Enzymatic Synthesis and Characterization of a Novel Water-Soluble Polyaniline: Poly(2,5-diaminobenzenesulfonate) , 1997 .

[25]  Schottky Barriers Derived from Metal‐Modified Polyaniline , 1999 .

[26]  T. Wen,et al.  Electrochemical Copolymerization of Diphenylamine with Aniline by a Pulse Potentiostatic Method , 2000 .

[27]  David Nilsson,et al.  Electric current rectification by an all-organic electrochemical device , 2002 .

[28]  T. S. Natarajan,et al.  PAni–PMMA blend/metal Schottky barriers , 2002 .

[29]  T. Wen,et al.  In situ UV–visible spectroelectrochemical studies on electrochromic behavior of poly(2,5-dimethoxy aniline) , 2002 .