Second Order Expansion for Implied Volatility in Two Factor Local Stochastic Volatility Models and Applications to the Dynamic \lambda -Sabr Model
暂无分享,去创建一个
[1] P. Henry-Labordère. A General Asymptotic Implied Volatility for Stochastic Volatility Models , 2005, cond-mat/0504317.
[2] Jan Obloj,et al. Fine-tune your smile: Correction to Hagan et al , 2007, 0708.0998.
[3] Elton P. Hsu,et al. ASYMPTOTICS OF IMPLIED VOLATILITY IN LOCAL VOLATILITY MODELS , 2009 .
[4] Antoine Jacquier,et al. The large-maturity smile for the Heston model , 2011, Finance Stochastics.
[5] Andrew Lesniewski,et al. Probability Distribution in the SABR Model of Stochastic Volatility , 2015 .
[6] Robert A. Jarrow,et al. The Stop-Loss Start-Gain Paradox and Option Valuation: A New Decomposition into Intrinsic and Time Value , 1990 .
[7] Option pricing with quadratic volatility: a revisit , 2011, Finance Stochastics.
[8] Antoine Jacquier,et al. Asymptotic formulae for implied volatility in the Heston model , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[9] Jin Feng,et al. Short-Maturity Asymptotics for a Fast Mean-Reverting Heston Stochastic Volatility Model , 2010, SIAM J. Financial Math..
[10] Antoine Jacquier,et al. Large Deviations and Asymptotic Methods in Finance , 2015 .
[11] A. Jacquier,et al. SMALL-TIME ASYMPTOTICS FOR IMPLIED VOLATILITY UNDER THE HESTON MODEL , 2009 .
[12] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[13] Marc Yor,et al. From Local Volatility to Local Levy Models , 2004 .
[14] tballest. Séminaire de probabilités , 2013 .
[15] Louis Paulot,et al. Asymptotic Implied Volatility at the Second Order with Application to the SABR Model , 2009, 0906.0658.
[16] S. Varadhan. On the behavior of the fundamental solution of the heat equation with variable coefficients , 2010 .
[17] S. Orszag,et al. Advanced Mathematical Methods For Scientists And Engineers , 1979 .
[18] K. Yosida. On the fundamental solution of the parabolic equation in a Riemannian space , 1953 .
[19] E. Stein,et al. Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .
[20] I. Holopainen. Riemannian Geometry , 1927, Nature.
[21] Alan L. Lewis. Option Valuation Under Stochastic Volatility: With Mathematica Code , 2000 .
[22] N. Touzi,et al. Option Hedging And Implied Volatilities In A Stochastic Volatility Model , 1996 .
[23] S. Minakshisundaram,et al. Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds , 1949, Canadian Journal of Mathematics.
[24] O. Scaillet,et al. Approximation and Calibration of Short-Term Implied Volatilities Under Jump-Diffusion Stochastic Volatility , 2006 .
[25] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[26] Antoine Jacquier,et al. The Small-Time Smile and Term Structure of Implied Volatility under the Heston Model , 2012, SIAM J. Financial Math..
[27] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .
[28] Akihiko Takahashi,et al. The Asymptotic Expansion Approach to the Valuation of Interest Rate Contingent Claims , 2001 .
[29] P. Hagan,et al. Equivalent Black volatilities , 1999 .
[30] Pierre Henry-Labordere,et al. Solvable local and stochastic volatility models: supersymmetric methods in option pricing , 2005, cond-mat/0511028.
[31] M. Berger,et al. Le Spectre d'une Variete Riemannienne , 1971 .
[32] Srinivasa Varadhan,et al. Diffusion processes in a small time interval , 1967 .
[33] I. Avramidi. Heat Kernel and Quantum Gravity , 2000 .
[34] Rama Cont. Encyclopedia of quantitative finance , 2010 .
[35] Henri Berestycki,et al. Asymptotics and calibration of local volatility models , 2002 .
[36] P. Bourgade,et al. Heat Kernel Expansion for a Family of Stochastic Volatility Models: Delta-Geometry , 2005 .
[37] P. Carr,et al. Stochastic Skew in Currency Options , 2004 .
[38] Jesper Andreasen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .
[39] Akihiko Takahashi,et al. Computation in an Asymptotic Expansion Method , 2009 .
[40] Alan G. White,et al. The Pricing of Options on Assets with Stochastic Volatilities , 1987 .
[41] E. Benhamou,et al. Local Time for the SABR Model: Connection with the 'Complex' Black Scholes and Application to CMS and Spread Options , 2007 .
[42] Stanislav Molchanov,et al. DIFFUSION PROCESSES AND RIEMANNIAN GEOMETRY , 1975 .
[43] H. Berestycki,et al. Computing the implied volatility in stochastic volatility models , 2004 .