Quasi-Shuffle Products
暂无分享,去创建一个
[1] Alexandre Varchenko,et al. Bilinear form of real configuration of hyperplanes , 1993 .
[2] David E. Radford,et al. A natural ring basis for the shuffle algebra and an application to group schemes , 1979 .
[3] U MichaelE.Hoffman. The Algebra of Multiple Harmonic Series , 1997 .
[4] A. Scholtens,et al. Free polynomial generators for the Hopf algebra QSym of quasisymmetric functions , 1999 .
[5] David J. Broadhurst. Massive 3-loop Feynman diagrams reducible to SC , 1999 .
[6] R. Ehrenborg. On Posets and Hopf Algebras , 1996 .
[7] C. Reutenauer,et al. Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .
[8] Israel M. Gelfand,et al. Noncommutative Symmetrical Functions , 1995 .
[9] J. Thibon,et al. Quantum quasi-symmetric functions and Hecke algebras , 1996 .
[10] J. Green. Quantum groups, Hall algebras and quantized shuffles , 1997 .
[11] Daniel Krob,et al. Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras , 2006, Discret. Math. Theor. Comput. Sci..
[12] M. Hazewinkel. The Leibniz-Hopf algebra and Lyndon words , 1996 .
[13] D. Zagier. Values of Zeta Functions and Their Applications , 1994 .
[14] Jonathan M. Borwein,et al. Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k , 1996, Electron. J. Comb..
[15] Alain Lascoux,et al. Noncommutative symmetric functions , 1994 .
[16] M. Rosso,et al. Groupes quantiques et algèbres de battage quantiques , 1995 .
[17] D. J. Broadhurst. Massive 3-loop Feynman diagrams reducible to SC$^*$ primitives of algebras of the sixth root of unity , 1999 .
[18] I. Gessel. Multipartite P-partitions and inner products of skew Schur functions , 1983 .
[19] A. Goncharov,et al. Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.
[20] Michael E. Hoffman,et al. The Algebra of Multiple Harmonic Series , 1997 .