Quasi-Shuffle Products

Given a locally finite graded set A and a commutative, associative operation on A that adds degrees, we construct a commutative multiplication * on the set of noncommutative polynomials in A which we call a quasi-shuffle product; it can be viewed as a generalization of the shuffle product III. We extend this commutative algebra structure to a Hopf algebra (U, *, Δ); in the case where A is the set of positive integers and the operation on A is addition, this gives the Hopf algebra of quasi-symmetric functions. If rational coefficients are allowed, the quasi-shuffle product is in fact no more general than the shuffle product; we give an isomorphism exp of the shuffle Hopf algebra (U, III, Δ) onto (U, *, Δ) the set L of Lyndon words on A and their images { exp(w) ∣ w ∈ L} freely generate the algebra (U, *). We also consider the graded dual of (U, *, Δ). We define a deformation *q of * that coincides with * when q = 1 and is isomorphic to the concatenation product when q is not a root of unity. Finally, we discuss various examples, particularly the algebra of quasi-symmetric functions (dual to the noncommutative symmetric functions) and the algebra of Euler sums.

[1]  Alexandre Varchenko,et al.  Bilinear form of real configuration of hyperplanes , 1993 .

[2]  David E. Radford,et al.  A natural ring basis for the shuffle algebra and an application to group schemes , 1979 .

[3]  U MichaelE.Hoffman The Algebra of Multiple Harmonic Series , 1997 .

[4]  A. Scholtens,et al.  Free polynomial generators for the Hopf algebra QSym of quasisymmetric functions , 1999 .

[5]  David J. Broadhurst Massive 3-loop Feynman diagrams reducible to SC , 1999 .

[6]  R. Ehrenborg On Posets and Hopf Algebras , 1996 .

[7]  C. Reutenauer,et al.  Duality between Quasi-Symmetrical Functions and the Solomon Descent Algebra , 1995 .

[8]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[9]  J. Thibon,et al.  Quantum quasi-symmetric functions and Hecke algebras , 1996 .

[10]  J. Green Quantum groups, Hall algebras and quantized shuffles , 1997 .

[11]  Daniel Krob,et al.  Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras , 2006, Discret. Math. Theor. Comput. Sci..

[12]  M. Hazewinkel The Leibniz-Hopf algebra and Lyndon words , 1996 .

[13]  D. Zagier Values of Zeta Functions and Their Applications , 1994 .

[14]  Jonathan M. Borwein,et al.  Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k , 1996, Electron. J. Comb..

[15]  Alain Lascoux,et al.  Noncommutative symmetric functions , 1994 .

[16]  M. Rosso,et al.  Groupes quantiques et algèbres de battage quantiques , 1995 .

[17]  D. J. Broadhurst Massive 3-loop Feynman diagrams reducible to SC$^*$ primitives of algebras of the sixth root of unity , 1999 .

[18]  I. Gessel Multipartite P-partitions and inner products of skew Schur functions , 1983 .

[19]  A. Goncharov,et al.  Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.

[20]  Michael E. Hoffman,et al.  The Algebra of Multiple Harmonic Series , 1997 .