Concentration Theorems for Entropy and Free Energy
暂无分享,去创建一个
[1] Виктор Павлович Маслов,et al. Интегральные уравнения и фазовые переходы в вероятностных играх. Аналогия со статистической физикой@@@Integral Equations and Phase Transitions in Stochastic Games. An Analogy with Statistical Physics , 2003 .
[2] V. Uspenskii,et al. Can an individual sequence of zeros and ones be random? Russian Math , 1990 .
[3] A. N. Kolmogorov. Combinatorial foundations of information theory and the calculus of probabilities , 1983 .
[4] Vladimir V. V'yugin,et al. Algorithmic Complexity and Stochastic Properties of Finite Binary Sequences , 1999, Comput. J..
[5] E. T. Jaynes,et al. Papers on probability, statistics and statistical physics , 1983 .
[6] Péter Gács,et al. Algorithmic statistics , 2000, IEEE Trans. Inf. Theory.
[7] Vladimir V. V'yugin,et al. Extremal Relations between Additive Loss Functions and the Kolmogorov Complexity , 2003, Probl. Inf. Transm..
[8] Zurek,et al. Algorithmic randomness and physical entropy. , 1989, Physical review. A, General physics.
[9] A. Kolmogorov,et al. ALGORITHMS AND RANDOMNESS , 1988 .
[10] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[11] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[12] Andrei N. Kolmogorov,et al. Logical basis for information theory and probability theory , 1968, IEEE Trans. Inf. Theory.
[13] Ming Li,et al. An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.