Biological Insights From 108 Schizophrenia-Associated Genetic Loci

Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.

C. Spencer | K. Davis | P. Visscher | N. Wray | M. Daly | H. Stefánsson | D. Rujescu | S. Cichon | O. Pietiläinen | S. Steinberg | E. Sigurdsson | T. Hansen | I. Giegling | A. Hartmann | J. Suvisaari | T. Paunio | E. Bramon | R. Murray | S. Tosato | Tao Li | S. Djurovic | I. Melle | N. Freimer | O. Andreassen | R. Ophoff | M. Rietschel | T. Werge | M. Nöthen | D. Collier | K. Stefánsson | G. Kirov | J. Lieberman | A. Malhotra | T. Schulze | M. Gill | N. Craddock | M. Owen | M. O’Donovan | P. Sullivan | J. Buxbaum | R. Cantor | S. Mccarroll | P. Sham | V. Salomaa | Jianxin Shi | J. Hirschhorn | R. Buckner | B. Neale | M. Hamshere | P. Holmans | A. Price | J. Waddington | R. Kahn | W. Cahn | R. Straub | D. Weinberger | S. Purcell | R. McCarley | W. Maier | J. Friedman | V. Haroutunian | J. Smoller | I. Agartz | J. Lönnqvist | J. Roffman | A. McIntosh | J. Mallet | R. Scott | A. Palotie | A. Metspalu | T. Esko | L. Milani | S. Karachanak-Yankova | D. Toncheva | P. Sklar | D. Blackwood | A. Corvin | C. Hultman | A. McQuillin | C. Pato | D. Ruderfer | D. Morris | C. O'Dushlaine | E. Scolnick | N. Williams | V. Milanova | J. Pimm | S. Thirumalai | D. Quested | D. Curtis | M. Pato | A. Fanous | J. Knowles | M. Fromer | P. Michie | Yunjung Kim | C. Pantelis | K. Kendler | D. Posthuma | L. Seidman | T. Stroup | D. Perkins | E. Stahl | D. Levinson | C. Schubert | J. Powell | M. Keller | I. Nenadić | G. Papadimitriou | Jianjun Liu | J. Karjalainen | P. Magnusson | T. Pers | J. Eriksson | L. Franke | J. Crowley | A. Pocklington | S. Bacanu | F. Henskens | C. Mcdonald | M. Davidson | R. Mesholam-Gately | T. Lencz | O. Mors | Wei Cheng | K. Murphy | J. Veijola | C. R. Cloninger | P. Mortensen | A. Børglum | D. Hougaard | H. Rasmussen | M. Mattheisen | E. Strengman | V. Golimbet | E. Jönsson | D. Campion | B. Müller-Myhsok | J. Lubiński | F. Dudbridge | B. Lerer | J. Kennedy | J. Goldstein | S. Ripke | Qingqin S. Li | H. Xi | J. Moran | D. St. Clair | B. Riley | T. Dinan | E. Parkhomenko | F. O’Neill | B. Webb | D. Walsh | C. Hammer | Miaoxin Li | E. Domenici | I. Myin-Germeys | J. van os | G. Nestadt | E. Drapeau | Kai-How Farh | B. Maher | J. Wendland | K. Sim | J. Szatkiewicz | B. Bulik-Sullivan | G. Genovese | L. Essioux | A. Jablensky | R. Chan | Phil H. Lee | M. Ikeda | G. Donohoe | M. Mattingsdal | Q. Wang | A. Reichenberg | M. Farrell | S. Lee | H. So | J. Duan | A. Sanders | M. Nelis | P. Gejman | P. Hoffmann | A. Darvasi | T. Petryshen | A. Pulver | A. Kähler | Sarah L Bergen | Stephanie Williams | P. Cormican | N. Durmishi | A. Richards | T. Silagadze | J. Walters | C. Laurent | B. Mowry | S. Schwab | D. Wildenauer | M. Albus | M. Alexander | D. Cohen | D. Dikeos | P. Eichhammer | S. Godard | M. Hansen | K. Liang | D. Nertney | J. Silverman | B. Wormley | L. Kalaydjieva | L. de Haan | D. Demontis | E. Agerbo | R. Belliveau | M. Hollegaard | Hailiang Huang | P. Roussos | F. Zimprich | D. Black | S. Papiol | H. Ehrenreich | Sang-Yun Oh | E. Chen | V. Escott-Price | Emily H. M. Wong | A. Khrunin | S. Limborska | D. Svrakic | A. Olincy | N. Carrera | S. Legge | M. Pejović-Milovančević | M. Macek | S. Witt | F. Degenhardt | S. Herms | V. Carr | C. Loughland | U. Schall | W. Byerley | M. Weiser | M. Begemann | M. Reimers | S. Meier | A. Julià | S. Marsal | Jimmy Lee | N. Iwata | Qiang Wang | J. Bene | V. Kučinskas | B. Melegh | J. Klovins | T. Bigdeli | P. Giusti-Rodríguez | E. Söderman | E. O'callaghan | E. Cheung | L. Nisenbaum | K. Nicodemus | R. Freedman | J. Strohmaier | H. Gurling | F. Amin | R. Bruggeman | N. Buccola | J. Frank | M. Friedl | L. Georgieva | B. Konte | L. Olsen | Elizabeth Bevilacqua | Guiqing Cai | S. Catts | K. Chambert | Ronald Y. L. Chan | S. Chong | Nadine Cohen | J. Del Favero | S. Gopal | J. Gratten | A. Hofman | I. Joa | D. Kavanagh | Z. Kučinskienė | Hana Kuzelova-Ptackova | C. Meijer | Y. Mokrab | L. Nikitina-Zake | A. Nordin | P. Slominsky | E. Stogmann | M. Subramaniam | Dai Wang | A. Wolen | C. Zai | Xue-bin Zheng | R. Adolfsson | J. Knight | S. H. Lee | E. Chen | S. Williams | C. O’Dushlaine | J. Kloviņš | K. Farh | J. Eriksson | C. Cloninger | Paola Giusti-Rodríguez | R. Murray | J. Eriksson | Annelie Nordin

[1]  A. Carlsson,et al.  EFFECT OF CHLORPROMAZINE OR HALOPERIDOL ON FORMATION OF 3METHOXYTYRAMINE AND NORMETANEPHRINE IN MOUSE BRAIN. , 2009, Acta pharmacologica et toxicologica.

[2]  J. V. van Rossum The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. , 1966, Archives internationales de pharmacodynamie et de therapie.

[3]  Van Rossum Jm The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. , 1966 .

[4]  P. Sullivan,et al.  Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. , 2003, Archives of general psychiatry.

[5]  Peter B. Jones,et al.  Oligodendrocyte dysfunction in schizophrenia and bipolar disorder , 2003, The Lancet.

[6]  I. Gottesman,et al.  The endophenotype concept in psychiatry: etymology and strategic intentions. , 2003, The American journal of psychiatry.

[7]  M. Knapp,et al.  The global costs of schizophrenia. , 2004, Schizophrenia bulletin.

[8]  J. Lieberman,et al.  Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. , 2005, The New England journal of medicine.

[9]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[10]  Patrick F Sullivan,et al.  Recurrence risks for schizophrenia in a Swedish National Cohort , 2006, Psychological Medicine.

[11]  S. Saha,et al.  A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? , 2007, Archives of general psychiatry.

[12]  C. Spencer,et al.  Identification of loci associated with schizophrenia by genome-wide association and follow-up , 2008, Nature Genetics.

[13]  P. Greengard,et al.  Resource Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types , 2009 .

[14]  Manuel A. R. Ferreira,et al.  Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder , 2008, Nature Genetics.

[15]  N. Craddock,et al.  Collaborative genome-wide association analysis of 10,596 individuals supports a role for Ankyrin-G (ANK3) and the alpha-1C subunit of the L-type voltage-gated calcium channel (CACNA1C) in bipolar disorder , 2008 .

[16]  P. Greengard,et al.  Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types , 2008, Cell.

[17]  Jianxin Shi,et al.  Common variants on chromosome 6p22.1 are associated with schizophrenia , 2009, Nature.

[18]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[19]  Pall I. Olason,et al.  Common variants conferring risk of schizophrenia , 2009, Nature.

[20]  Manuel A. R. Ferreira,et al.  Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. , 2009, American journal of human genetics.

[21]  Patrick F. Sullivan,et al.  A framework for interpreting genome-wide association studies of psychiatric disorders , 2009, Molecular Psychiatry.

[22]  Ayellet V. Segrè,et al.  Hundreds of variants clustered in genomic loci and biological pathways affect human height , 2010, Nature.

[23]  N. Cox,et al.  Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS , 2010, PLoS genetics.

[24]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[25]  Kazuo Yamada,et al.  Genome-Wide Association Study of Schizophrenia in Japanese Population , 2011, PloS one.

[26]  Yi Wang,et al.  Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2 , 2011, Nature Genetics.

[27]  Mark I McCarthy,et al.  Genomic inflation factors under polygenic inheritance , 2011, European Journal of Human Genetics.

[28]  H. Stefánsson,et al.  Common variants at VRK2 and TCF4 conferring risk of schizophrenia. , 2011, Human molecular genetics.

[29]  Anders D. Børglum,et al.  Genome-wide association study identifies five new schizophrenia loci , 2011, Nature Genetics.

[30]  Qi Xu,et al.  Common variants on 8p12 and 1q24.2 confer risk of schizophrenia , 2011, Nature Genetics.

[31]  J. Marchini,et al.  Genotype Imputation with Thousands of Genomes , 2011, G3: Genes | Genomes | Genetics.

[32]  G. Tseng,et al.  Comprehensive literature review and statistical considerations for GWAS meta-analysis , 2012, Nucleic acids research.

[33]  Patrick F. Sullivan,et al.  Genetic architectures of psychiatric disorders: the emerging picture and its implications , 2012, Nature Reviews Genetics.

[34]  P. Mortensen,et al.  Autoimmune diseases and infections as risk factors for schizophrenia , 2012, Annals of the New York Academy of Sciences.

[35]  P. Visscher,et al.  A Better Coefficient of Determination for Genetic Profile Analysis , 2012, Genetic epidemiology.

[36]  Thomas W. Mühleisen,et al.  Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe , 2012, Molecular Psychiatry.

[37]  S Purcell,et al.  De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia , 2011, Molecular Psychiatry.

[38]  Colm O'Dushlaine,et al.  INRICH: interval-based enrichment analysis for genome-wide association studies , 2012, Bioinform..

[39]  Jake K. Byrnes,et al.  Bayesian refinement of association signals for 14 loci in 3 common diseases , 2012, Nature Genetics.

[40]  M C O'Donovan,et al.  Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia , 2011, Molecular Psychiatry.

[41]  Aiden Corvin,et al.  Genome-Wide Association Study Implicates HLA-C*01: 02 as a Risk Factor at the Major Histocompatibility Complex Locus in Schizophrenia Irish Schizophrenia Genomics Consortium and the Wellcome Trust Case Control Consortium 2 , 2012 .

[42]  M C O'Donovan,et al.  Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain , 2012, Molecular Psychiatry.

[43]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[44]  David C. Wilson,et al.  Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease , 2012, Nature.

[45]  O. Delaneau,et al.  A linear complexity phasing method for thousands of genomes , 2011, Nature Methods.

[46]  Michael John Owen,et al.  Genome-Wide Association Study Implicates HLA-C*01:02 as a Risk Factor at the Major Histocompatibility Complex Locus in Schizophrenia , 2012, Biological Psychiatry.

[47]  S Purcell,et al.  Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC , 2013, Molecular Psychiatry.

[48]  Simon C. Potter,et al.  Genome-wide Association Analysis Identifies 14 New Risk Loci for Schizophrenia , 2013, Nature Genetics.

[49]  真田 昌 骨髄異形成症候群のgenome-wide analysis , 2013 .

[50]  S Purcell,et al.  Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC , 2013, Molecular Psychiatry.

[51]  Annette Lee,et al.  Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder , 2013, Nature Communications.

[52]  M. Daly,et al.  Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis , 2013, The Lancet.

[53]  T. Colibazzi,et al.  Journal Watch review of Research domain criteria (RDoC) , 2014, Journal of the American Psychoanalytic Association.

[54]  P. Sullivan,et al.  Heritability and Genomics of Gene Expression in Peripheral Blood , 2014, Nature Genetics.

[55]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[56]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[57]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.