A Nonrepeating Fast Radio Burst in a Dwarf Host Galaxy

We present the discovery of an as yet nonrepeating fast radio burst (FRB), FRB 20210117A, with the Australian Square Kilometre Array Pathfinder (ASKAP), as a part of the Commensal Real-time ASKAP Fast Transients Survey. The subarcsecond localization of the burst led to the identification of its host galaxy at z = 0.214(1). This redshift is much lower than what would be expected for a source dispersion measure (DM) of 729 pc cm−3, given typical contributions from the intergalactic medium and the host galaxy. Optical observations reveal the host to be a dwarf galaxy with little ongoing star formation—very different to the dwarf host galaxies of the known repeating FRBs 20121102A and 20190520B. We find an excess DM contribution from the host and attribute it to the FRB’s local environment. We do not find any radio emission from the FRB site or host galaxy. The low magnetized environment and the lack of a persistent radio source indicate that the FRB source is older than those found in other dwarf host galaxies, establishing the diversity of FRB sources in dwarf galaxy environments. We find our observations to be fully consistent with the “hypernebula” model, where the FRB is powered by an accretion jet from a hyperaccreting black hole. Finally, our high time resolution analysis reveals burst characteristics similar to those seen in repeating FRBs. We encourage follow-up observations of FRB 20210117A to establish any repeating nature.

[1]  Bing Zhang,et al.  Faraday Rotation Measure Variations of Repeating Fast Radio Burst Sources , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  Curtis N. James,et al.  A measurement of Hubble’s Constant using Fast Radio Bursts , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  B. Metzger,et al.  Radio Nebulae from Hyperaccreting X-Ray Binaries as Common-envelope Precursors and Persistent Counterparts of Fast Radio Bursts , 2022, The Astrophysical Journal.

[4]  A. Levan,et al.  Short GRB Host Galaxies. II. A Legacy Sample of Redshifts, Stellar Population Properties, and Implications for Their Neutron Star Merger Origins , 2022, The Astrophysical Journal.

[5]  D. Gerdes,et al.  The DECam Local Volume Exploration Survey Data Release 2 , 2022, The Astrophysical Journal Supplement Series.

[6]  S. Djorgovski,et al.  A fast radio burst source at a complex magnetised site in a barred galaxy , 2021 .

[7]  S. Burke-Spolaor,et al.  A repeating fast radio burst associated with a persistent radio source , 2021, Nature.

[8]  K. Lee,et al.  Constraining the Cosmic Baryon Distribution with Fast Radio Burst Foreground Mapping , 2021, The Astrophysical Journal.

[9]  R. Ekers,et al.  Characterizing the Fast Radio Burst Host Galaxy Population and its Connection to Transients in the Local and Extragalactic Universe , 2021, The Astronomical Journal.

[10]  E. Lenc,et al.  Astrometric accuracy of snapshot fast radio burst localisations with ASKAP , 2021, Publications of the Astronomical Society of Australia.

[11]  J. Prochaska,et al.  Chronicling the Host Galaxy Properties of the Remarkable Repeating FRB 20201124A , 2021, The Astrophysical Journal Letters.

[12]  Kendrick M. Smith,et al.  Fast Radio Burst Morphology in the First CHIME/FRB Catalog , 2021, The Astrophysical Journal.

[13]  Kendrick M. Smith,et al.  The First CHIME/FRB Fast Radio Burst Catalog , 2021, The Astrophysical Journal Supplement Series.

[14]  K. Smith,et al.  A repeating fast radio burst source in a globular cluster , 2021, Nature.

[15]  J. Prochaska,et al.  Probabilistic Association of Transients to their Hosts (PATH) , 2021, The Astrophysical Journal.

[16]  B. Metzger,et al.  Periodic Fast Radio Bursts from Luminous X-ray Binaries , 2021, The Astrophysical Journal.

[17]  J. Prochaska,et al.  The z--DM distribution of fast radio bursts , 2021, 2101.08005.

[18]  J. Katz Testing models of periodically modulated FRB activity , 2020, Monthly Notices of the Royal Astronomical Society.

[19]  Benjamin D. Johnson,et al.  Stellar Population Inference with Prospector , 2020, The Astrophysical Journal Supplement Series.

[20]  T. Murphy,et al.  The Rapid ASKAP Continuum Survey I: Design and first results , 2020, Publications of the Astronomical Society of Australia.

[21]  D. Werthimer,et al.  A bimodal burst energy distribution of a repeating fast radio burst source , 2020, Nature.

[22]  G. Desvignes,et al.  Rotation Measure Evolution of the Repeating Fast Radio Burst Source FRB 121102 , 2020, The Astrophysical Journal.

[23]  J. Prochaska,et al.  Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors , 2020, The Astrophysical Journal.

[24]  S. Burke-Spolaor,et al.  FETCH: A deep-learning based classifier for fast transient classification , 2020 .

[25]  A. Deller,et al.  Extremely band-limited repetition from a fast radio burst source , 2020, 2009.01214.

[26]  J. Neill,et al.  The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae , 2020, The Astrophysical Journal Supplement Series.

[27]  R. Lynch,et al.  Repeating behaviour of FRB 121102: periodicity, waiting times, and energy distribution , 2020, Monthly Notices of the Royal Astronomical Society.

[28]  T. Murphy,et al.  A population analysis of pulse broadening in ASKAP fast radio bursts , 2020, 2006.16502.

[29]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[30]  R. Ekers,et al.  High time resolution and polarization properties of ASKAP-localized fast radio bursts , 2020, 2005.13162.

[31]  J. Prochaska,et al.  The Host Galaxies and Progenitors of Fast Radio Bursts Localized with the Australian Square Kilometre Array Pathfinder , 2020, 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science.

[32]  A. Deller,et al.  A search for supernova-like optical counterparts to ASKAP-localised fast radio bursts , 2020, Astronomy & Astrophysics.

[33]  J. Prochaska,et al.  A census of baryons in the Universe from localized fast radio bursts , 2020, Nature.

[34]  J. Prochaska,et al.  Spectropolarimetric Analysis of FRB 181112 at Microsecond Resolution: Implications for Fast Radio Burst Emission Mechanism , 2020, The Astrophysical Journal.

[35]  Kendrick M. Smith,et al.  A repeating fast radio burst source localized to a nearby spiral galaxy , 2020, Nature.

[36]  D. Perley,et al.  Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the importance of dwarf and starbursting galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[37]  Steward Observatory,et al.  PypeIt: The Python Spectroscopic Data Reduction Pipeline , 2019, J. Open Source Softw..

[38]  S. Djorgovski,et al.  A fast radio burst localized to a massive galaxy , 2019, Nature.

[39]  E. Berger,et al.  Fast Radio Bursts from Magnetars Born in Binary Neutron Star Mergers and Accretion Induced Collapse , 2019, The Astrophysical Journal.

[40]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[41]  J. Prochaska,et al.  Probing Galactic Halos with Fast Radio Bursts , 2019, Monthly Notices of the Royal Astronomical Society.

[42]  R. Lynch,et al.  FRB 121102 Bursts Show Complex Time–Frequency Structure , 2018, The Astrophysical Journal.

[43]  Benjamin D. Johnson,et al.  How to Measure Galaxy Star Formation Histories. II. Nonparametric Models , 2018, The Astrophysical Journal.

[44]  P. Lasky,et al.  Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.

[45]  C. W. James,et al.  The Spectral Properties of the Bright Fast Radio Burst Population , 2018, The Astrophysical Journal.

[46]  R. Ekers,et al.  The dispersion–brightness relation for fast radio bursts from a wide-field survey , 2018, Nature.

[47]  B. Metzger,et al.  A Concordance Picture of FRB 121102 as a Flaring Magnetar Embedded in a Magnetized Ion–Electron Wind Nebula , 2018, The Astrophysical Journal.

[48]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[49]  R. Lynch,et al.  An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102 , 2018, Nature.

[50]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[51]  J. Wang,et al.  Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102 , 2017, 1702.05831.

[52]  G. Bruce Berriman,et al.  The Application of the Montage Image Mosaic Engine to the Visualization of Astronomical Images , 2017, 1702.02593.

[53]  A. Keimpema,et al.  A direct localization of a fast radio burst and its host , 2017, Nature.

[54]  R. N. Manchester,et al.  A NEW ELECTRON-DENSITY MODEL FOR ESTIMATION OF PULSAR AND FRB DISTANCES , 2016, 1610.09448.

[55]  Nrl,et al.  A repeating fast radio burst , 2016, Nature.

[56]  M. Kramer,et al.  FRBCAT: The Fast Radio Burst Catalogue , 2016, Publications of the Astronomical Society of Australia.

[57]  U. Pen,et al.  Non-cosmological FRBs from young supernova remnant pulsars , 2015, 1505.05535.

[58]  Jun Xu,et al.  Extragalactic dispersion measures of fast radio bursts , 2015, 1504.00200.

[59]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[60]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[61]  W. Freudling,et al.  Automated data reduction workflows for astronomy , 2013, 1311.5411.

[62]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[63]  C. Conroy Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.

[64]  S. Ravindranath,et al.  H-alpha survey of nearby dwarf galaxies , 2012, 1206.5585.

[65]  S. Roweis,et al.  ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES , 2009, 0910.2233.

[66]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[67]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[68]  C. Collins,et al.  The Hα Galaxy Survey ⋆ I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies , 2003, astro-ph/0311030.

[69]  D. Calzetti The Dust Opacity of Star‐forming Galaxies , 2001, astro-ph/0109035.

[70]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.