III–V Nanowire Transistors for Low-Power Logic Applications: A Review and Outlook

III-V semiconductors, especially InAs, have much higher electron mobilities than Si and have been considered as promising candidates for n-channel materials for post-Si low-power CMOS logic applications. Combined with the inherent 3-D structure that enables the gate-all-around (GAA) geometry for superb gate electrostatic control, III-V nanowire (NW) MOSFETs are well positioned to extend the scaling beyond Si. This paper attempts to provide a review of the growth and fabrication approaches (both bottom-up and top-down), and the state-of-the-art device performance of III-V NW GAA MOSFETs, as well as an outlook of their scaling potential.

[1]  Vertical InAs nanowire MOSFETs with IDS = 1.34 mA/µm and gm = 1.19 mS/µm at VDS = 0.5 V , 2012, 70th Device Research Conference.

[2]  T. Fukui,et al.  Integration of III-V nanowires on Si: From high-performance vertical FET to steep-slope switch , 2013, 2013 IEEE International Electron Devices Meeting.

[3]  E. Lind,et al.  Vertical InAs nanowire wrap gate transistors with f(t) > 7 GHz and f(max) > 20 GHz. , 2010, Nano letters.

[4]  Guoqiang Zhang,et al.  Encapsulated gate-all-around InAs nanowire field-effect transistors , 2013 .

[5]  J. D. del Alamo,et al.  Vertical nanowire InGaAs MOSFETs fabricated by a top-down approach , 2013, 2013 IEEE International Electron Devices Meeting.

[6]  T. Topuria,et al.  Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane , 2008 .

[7]  Yuan Taur An analytical solution to a double-gate MOSFET with undoped body , 2000, IEEE Electron Device Letters.

[8]  Peide D. Ye,et al.  Size-Dependent-Transport Study of $\hbox{In}_{0.53} \hbox{Ga}_{0.47}\hbox{As}$ Gate-All-Around Nanowire MOSFETs: Impact of Quantum Confinement and Volume Inversion , 2012, IEEE Electron Device Letters.

[9]  Xiuling Li,et al.  Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel. , 2013, Nano letters.

[10]  Zhiyong Fan,et al.  Diameter-dependent electron mobility of InAs nanowires. , 2009, Nano letters.

[11]  Nripendra N. Halder,et al.  Role of ultra thin pseudomorphic InP layer to improve the high-k dielectric/GaAs interface in realizing metal-oxide-semiconductor capacitor , 2012 .

[12]  W. Prost,et al.  High Transconductance MISFET With a Single InAs Nanowire Channel , 2007, IEEE Electron Device Letters.

[13]  Eiichi Sano,et al.  Vertical Surrounding Gate Transistors Using Single InAs Nanowires Grown on Si Substrates , 2010 .

[14]  Parsian K. Mohseni,et al.  InAs Planar Nanowire Gate-All-Around MOSFETs on GaAs Substrates by Selective Lateral Epitaxy , 2015, IEEE Electron Device Letters.

[15]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[16]  Paul M. Solomon,et al.  In Quest of the “Next Switch”: Prospects for Greatly Reduced Power Dissipation in a Successor to the Silicon Field-Effect Transistor , 2010, Proceedings of the IEEE.

[17]  Connie J. Chang-Hasnain,et al.  Critical diameter for III-V nanowires grown on lattice-mismatched substrates , 2007 .

[18]  Mark Y. Liu,et al.  A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size , 2014, 2014 IEEE International Electron Devices Meeting.

[19]  Yasuyuki Miyamoto,et al.  InAs Thin-Channel High-Electron-Mobility Transistors with Very High Current-Gain Cutoff Frequency for Emerging Submillimeter-Wave Applications , 2013 .

[20]  Miguel Urteaga,et al.  50-nm E-mode In[subscript 0.7]Ga[subscript 0.3]As PHEMTs on 100-mm InP substrate with f[subscript max] > 1 THz , 2010 .

[21]  H.C. Lin,et al.  Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited $\hbox{Al}_{2}\hbox{O}_{3}$ as Gate Dielectric , 2007, IEEE Electron Device Letters.

[22]  Peide D. Ye,et al.  Size-Dependent-Transport Study of In 0 . 53 Ga 0 . 47 As Gate-All-Around Nanowire MOSFETs : Impact of Quantum Confinement and Volume Inversion , 2012 .

[23]  D. L. Lile,et al.  An InP MIS diode , 1976 .

[24]  T. Fukui,et al.  Vertical In0.7Ga0.3As nanowire surrounding-gate transistors with high-k gate dielectric on Si substrate , 2011, 2011 International Electron Devices Meeting.

[25]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[26]  Xin Zhao,et al.  Nanometer-Scale Vertical-Sidewall Reactive Ion Etching of InGaAs for 3-D III-V MOSFETs , 2014, IEEE Electron Device Letters.

[27]  Yuan Taur,et al.  Scaling of Nanowire Transistors , 2008, IEEE Transactions on Electron Devices.

[28]  Mark Osowski,et al.  Progress in InGaAs-GaAs selective-area MOCVD toward photonic integrated circuits , 1997 .

[29]  Ik Su Chun,et al.  Planar GaAs nanowires on GaAs (100) substrates: self-aligned, nearly twin-defect free, and transfer-printable. , 2008, Nano letters.

[30]  Takashi Fukui,et al.  Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates , 2004 .

[31]  B. Brar F T = 688 Ghz and F Max = 800 Ghz in L G = 40 Nm in 0.7 Ga 0.3 as Mhemts with G M_max > 2.7 Ms/μm , 2011 .

[32]  S. Fortuna,et al.  Metal-catalyzed semiconductor nanowires: a review on the control of growth directions , 2010 .

[33]  Xiuling Li,et al.  High-Speed Planar GaAs Nanowire Arrays with fmax > 75 GHz by Wafer-Scale Bottom-up Growth. , 2015, Nano letters.

[34]  Berinder Brar,et al.  fT = 688 GHz and fmax = 800 GHz in Lg = 40 nm In0.7Ga0.3As MHEMTs with gm_max > 2.7 mS/µm , 2011, 2011 International Electron Devices Meeting.

[35]  Xiuling Li,et al.  III-V Junctionless Gate-All-Around Nanowire MOSFETs for High Linearity Low Power Applications , 2014, IEEE Electron Device Letters.

[36]  Mengwei Si,et al.  Effects of forming gas anneal on ultrathin InGaAs nanowire metal-oxide-semiconductor field-effect transistors , 2013 .

[37]  L.-E. Wernersson,et al.  Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.

[38]  Injection velocity in thin-channel InAs HEMTs , 2011, IPRM 2011 - 23rd International Conference on Indium Phosphide and Related Materials.

[39]  Donggun Park,et al.  Investigation of nanowire size dependency on TSNWFET , 2007, 2007 IEEE International Electron Devices Meeting.

[40]  K. Alam,et al.  Electronic Properties and Orientation-Dependent Performance of InAs Nanowire Transistors , 2010, IEEE Transactions on Electron Devices.

[41]  Lars-Erik Wernersson,et al.  III–V compound semiconductor transistors—from planar to nanowire structures , 2014 .

[42]  Arvind Kumar,et al.  Silicon CMOS devices beyond scaling , 2006, IBM J. Res. Dev..

[43]  M. Luisier,et al.  Multiscale Metrology and Optimization of Ultra-Scaled InAs Quantum Well FETs , 2010, IEEE Transactions on Electron Devices.

[44]  Stephanie Thalberg,et al.  Fundamentals Of Modern Vlsi Devices , 2016 .

[45]  Philippe Caroff,et al.  Control of III–V nanowire crystal structure by growth parameter tuning , 2010 .

[46]  G. Dewey,et al.  Non-planar, multi-gate InGaAs quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications , 2010, 2010 International Electron Devices Meeting.

[47]  Erik Lind,et al.  High-Frequency Gate-All-Around Vertical InAs Nanowire MOSFETs on Si Substrates , 2014, IEEE Electron Device Letters.

[48]  Mark S. Lundstrom Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.

[49]  K. Dick,et al.  Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.

[50]  M. Scheffler,et al.  Diameter-dependent conductance of InAs nanowires , 2009, 0912.4509.

[51]  I. Lauer,et al.  Density scaling with gate-all-around silicon nanowire MOSFETs for the 10 nm node and beyond , 2013, 2013 IEEE International Electron Devices Meeting.

[52]  J. Batey,et al.  Unpinned GaAs MOS capacitors and transistors , 1988, IEEE Electron Device Letters.

[53]  E. Lind,et al.  High-Performance InAs Nanowire MOSFETs , 2012, IEEE Electron Device Letters.

[54]  New insight into Fermi-level unpinning on GaAs: Impact of different surface orientations , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[55]  E. Bakkers,et al.  Epitaxial Growth of III-V Nanowires on Group IV Substrates , 2008 .

[56]  T. Bryllert,et al.  Vertical high-mobility wrap-gated InAs nanowire transistor , 2006, IEEE Electron Device Letters.

[57]  GaAs MESFET With a High-Mobility Self-Assembled Planar Nanowire Channel , 2009, IEEE Electron Device Letters.

[58]  Y. Xuan Submicrometer inversion-type enhancement-mode InGaAs MOSFET with atomic-layer-deposited Al 2 O 3 as gate dielectric , 2014 .

[59]  Jared J. Hou,et al.  Surface roughness induced electron mobility degradation in InAs nanowires , 2013, Nanotechnology.

[60]  D. Antoniadis,et al.  A Novel Digital Etch Technique for Deeply Scaled III-V MOSFETs , 2014, IEEE Electron Device Letters.

[61]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .

[62]  Xiuling Li,et al.  Effect of diameter variation on electrical characteristics of Schottky barrier indium arsenide nanowire field-effect transistors. , 2014, ACS nano.

[63]  Carl W. Wilmsen,et al.  The Mos/InP interface , 1975 .

[64]  E. Lind,et al.  Development of a Vertical Wrap-Gated InAs FET , 2008, IEEE Transactions on Electron Devices.

[65]  J. Hollingsworth,et al.  The scaling of the effective band gaps in indium-arsenide quantum dots and wires. , 2008, ACS nano.

[66]  E. Lind,et al.  Band Structure Effects on the Scaling Properties of [111] InAs Nanowire MOSFETs , 2009, IEEE Transactions on Electron Devices.

[67]  J. P. Hirtz,et al.  The carrier mobilities in Ga0.47In0.53as grown by organo-mettalic CVD and liquid-phase epitaxy , 1981 .

[68]  Chennupati Jagadish,et al.  Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters. , 2010, Nano letters.

[69]  E.J. Nowak,et al.  The effective drive current in CMOS inverters , 2002, Digest. International Electron Devices Meeting,.

[70]  M. J. Manfra,et al.  III-V gate-all-around nanowire MOSFET process technology: From 3D to 4D , 2012, 2012 International Electron Devices Meeting.

[71]  Ian A. Young,et al.  Source/Drain Doping Effects and Performance Analysis of Ballistic III-V n-MOSFETs , 2015, IEEE Journal of the Electron Devices Society.

[72]  B. R. Nag,et al.  Electron transport in direct-gap III-V ternary alloys , 1981 .

[73]  M. J. W. Rodwell,et al.  Record Ion (0.50 mA/µm at VDD = 0.5 V and Ioff = 100 nA/µm) 25 nm-gate-length ZrO2/InAs/InAlAs MOSFETs , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[74]  T. Shen,et al.  High-performance surface channel In-rich In0.75Ga0.25As MOSFETs with ALD high-k as gate dielectric , 2008, 2008 IEEE International Electron Devices Meeting.

[75]  Xiuling Li,et al.  Relationship between planar GaAs nanowire growth direction and substrate orientation , 2013, Nanotechnology.

[76]  Erik Lind,et al.  Extrinsic and Intrinsic Performance of Vertical InAs Nanowire MOSFETs on Si Substrates , 2013, IEEE Transactions on Electron Devices.

[77]  J. Baugh,et al.  Temperature-dependent electron mobility in InAs nanowires , 2012, Nanotechnology.

[78]  C. Auth,et al.  A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[79]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[80]  Robert M. Wallace,et al.  Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinning , 2009 .

[81]  D. Antoniadis,et al.  Extraction of virtual-source injection velocity in sub-100 nm III–V HFETs , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[82]  R. Chau,et al.  Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[83]  H. Morkoç,et al.  Gate quality Si3N4/Si/n‐In0.53Ga0.47As metal‐insulator‐semiconductor capacitors , 1992 .

[84]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[85]  W. Seifert,et al.  Diameter-dependent growth rate of InAs nanowires , 2007 .

[86]  H. Morkoç,et al.  Interface properties of Si3N4Si/n-GaAs metal-msulator-semiconductor structure using a Si interlayer , 1996 .

[87]  E. Bakkers,et al.  Surface passivated InAs/InP core/shell nanowires , 2010 .

[88]  E. Lind,et al.  Heterostructure Barriers in Wrap Gated Nanowire FETs , 2008, IEEE Electron Device Letters.

[89]  M. J. Manfra,et al.  20–80nm Channel length InGaAs gate-all-around nanowire MOSFETs with EOT=1.2nm and lowest SS=63mV/dec , 2012, 2012 International Electron Devices Meeting.

[90]  Ultrathin InAs nanowire growth by spontaneous Au nanoparticle spreading on indium-rich surfaces. , 2014, Nanoscale.

[91]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[92]  High voltage gain MESFET amplifier using self-aligned MOCVD grown planar GaAs nanowires , 2013, 71st Device Research Conference.

[93]  S. Narasimha,et al.  22nm High-performance SOI technology featuring dual-embedded stressors, Epi-Plate High-K deep-trench embedded DRAM and self-aligned Via 15LM BEOL , 2012, 2012 International Electron Devices Meeting.

[94]  C. Merckling,et al.  InGaAs MOS Transistors Fabricated through a Digital-Etch Gate-Recess Process and the Influence of Forming Gas Anneal on Their Electrical Behavior , 2012 .

[95]  Peide D. Ye,et al.  Effects of (NH4)2S passivation on the off-state performance of 3-dimensional InGaAs metal-oxide-semiconductor field-effect transistors , 2011 .

[96]  Xin Miao,et al.  Site-controlled VLS growth of planar nanowires: yield and mechanism. , 2014, Nano letters.

[97]  Planar GaAs nanowire tri-gate MOSFETs by vapor–liquid–solid growth , 2014 .

[98]  P. Ye,et al.  Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric , 2006 .

[99]  P. Piquini,et al.  Diameter dependence of mechanical, electronic, and structural properties of InAs and InP nanowires: A first-principles study , 2010 .

[100]  J. Plummer,et al.  Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET's , 1997, IEEE Electron Device Letters.

[101]  Joshua E-Y Lee,et al.  Diameter dependence of electron mobility in InGaAs nanowires , 2013 .

[102]  Erik Lind,et al.  Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. , 2006, Nano letters.

[103]  R. Chau,et al.  Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.

[104]  Lin-wang Wang,et al.  Band-structure-corrected local density approximation study of semiconductor quantum dots and wires , 2005 .

[105]  P. D. Ye,et al.  First experimental demonstration of gate-all-around III–V MOSFETs by top-down approach , 2011, 2011 International Electron Devices Meeting.

[106]  Takashi Fukui,et al.  Control of InAs nanowire growth directions on Si. , 2008, Nano letters.

[107]  Xiaocheng Jiang,et al.  InAs/InP radial nanowire heterostructures as high electron mobility devices. , 2007, Nano letters.

[108]  P. D. Ye,et al.  Main determinants for III-V metal-oxide-semiconductor field-effect transistors ( invited ) , 2014 .

[109]  M. J. W. Rodwell,et al.  Record extrinsic transconductance (2.45 mS/µm at VDS = 0.5 V) InAs/In0.53Ga0.47As channel MOSFETs using MOCVD source-drain regrowth , 2013, 2013 Symposium on VLSI Technology.

[110]  Peter Chen,et al.  50-nm E-mode In0.7Ga0.3As PHEMTs on 100-mm InP substrate with fmax > 1 THz , 2010, 2010 International Electron Devices Meeting.

[111]  Dae-Hyun Kim,et al.  Scalability of Sub-100 nm InAs HEMTs on InP Substrate for Future Logic Applications , 2010, IEEE Transactions on Electron Devices.

[112]  Chennupati Jagadish,et al.  Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.