III–V Nanowire Transistors for Low-Power Logic Applications: A Review and Outlook
暂无分享,去创建一个
[1] Vertical InAs nanowire MOSFETs with IDS = 1.34 mA/µm and gm = 1.19 mS/µm at VDS = 0.5 V , 2012, 70th Device Research Conference.
[2] T. Fukui,et al. Integration of III-V nanowires on Si: From high-performance vertical FET to steep-slope switch , 2013, 2013 IEEE International Electron Devices Meeting.
[3] E. Lind,et al. Vertical InAs nanowire wrap gate transistors with f(t) > 7 GHz and f(max) > 20 GHz. , 2010, Nano letters.
[4] Guoqiang Zhang,et al. Encapsulated gate-all-around InAs nanowire field-effect transistors , 2013 .
[5] J. D. del Alamo,et al. Vertical nanowire InGaAs MOSFETs fabricated by a top-down approach , 2013, 2013 IEEE International Electron Devices Meeting.
[6] T. Topuria,et al. Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane , 2008 .
[7] Yuan Taur. An analytical solution to a double-gate MOSFET with undoped body , 2000, IEEE Electron Device Letters.
[8] Peide D. Ye,et al. Size-Dependent-Transport Study of $\hbox{In}_{0.53} \hbox{Ga}_{0.47}\hbox{As}$ Gate-All-Around Nanowire MOSFETs: Impact of Quantum Confinement and Volume Inversion , 2012, IEEE Electron Device Letters.
[9] Xiuling Li,et al. Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel. , 2013, Nano letters.
[10] Zhiyong Fan,et al. Diameter-dependent electron mobility of InAs nanowires. , 2009, Nano letters.
[11] Nripendra N. Halder,et al. Role of ultra thin pseudomorphic InP layer to improve the high-k dielectric/GaAs interface in realizing metal-oxide-semiconductor capacitor , 2012 .
[12] W. Prost,et al. High Transconductance MISFET With a Single InAs Nanowire Channel , 2007, IEEE Electron Device Letters.
[13] Eiichi Sano,et al. Vertical Surrounding Gate Transistors Using Single InAs Nanowires Grown on Si Substrates , 2010 .
[14] Parsian K. Mohseni,et al. InAs Planar Nanowire Gate-All-Around MOSFETs on GaAs Substrates by Selective Lateral Epitaxy , 2015, IEEE Electron Device Letters.
[15] P. Vogl,et al. nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.
[16] Paul M. Solomon,et al. In Quest of the “Next Switch”: Prospects for Greatly Reduced Power Dissipation in a Successor to the Silicon Field-Effect Transistor , 2010, Proceedings of the IEEE.
[17] Connie J. Chang-Hasnain,et al. Critical diameter for III-V nanowires grown on lattice-mismatched substrates , 2007 .
[18] Mark Y. Liu,et al. A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size , 2014, 2014 IEEE International Electron Devices Meeting.
[19] Yasuyuki Miyamoto,et al. InAs Thin-Channel High-Electron-Mobility Transistors with Very High Current-Gain Cutoff Frequency for Emerging Submillimeter-Wave Applications , 2013 .
[20] Miguel Urteaga,et al. 50-nm E-mode In[subscript 0.7]Ga[subscript 0.3]As PHEMTs on 100-mm InP substrate with f[subscript max] > 1 THz , 2010 .
[21] H.C. Lin,et al. Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited $\hbox{Al}_{2}\hbox{O}_{3}$ as Gate Dielectric , 2007, IEEE Electron Device Letters.
[22] Peide D. Ye,et al. Size-Dependent-Transport Study of In 0 . 53 Ga 0 . 47 As Gate-All-Around Nanowire MOSFETs : Impact of Quantum Confinement and Volume Inversion , 2012 .
[23] D. L. Lile,et al. An InP MIS diode , 1976 .
[24] T. Fukui,et al. Vertical In0.7Ga0.3As nanowire surrounding-gate transistors with high-k gate dielectric on Si substrate , 2011, 2011 International Electron Devices Meeting.
[25] R. S. Wagner,et al. VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .
[26] Xin Zhao,et al. Nanometer-Scale Vertical-Sidewall Reactive Ion Etching of InGaAs for 3-D III-V MOSFETs , 2014, IEEE Electron Device Letters.
[27] Yuan Taur,et al. Scaling of Nanowire Transistors , 2008, IEEE Transactions on Electron Devices.
[28] Mark Osowski,et al. Progress in InGaAs-GaAs selective-area MOCVD toward photonic integrated circuits , 1997 .
[29] Ik Su Chun,et al. Planar GaAs nanowires on GaAs (100) substrates: self-aligned, nearly twin-defect free, and transfer-printable. , 2008, Nano letters.
[30] Takashi Fukui,et al. Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates , 2004 .
[31] B. Brar. F T = 688 Ghz and F Max = 800 Ghz in L G = 40 Nm in 0.7 Ga 0.3 as Mhemts with G M_max > 2.7 Ms/μm , 2011 .
[32] S. Fortuna,et al. Metal-catalyzed semiconductor nanowires: a review on the control of growth directions , 2010 .
[33] Xiuling Li,et al. High-Speed Planar GaAs Nanowire Arrays with fmax > 75 GHz by Wafer-Scale Bottom-up Growth. , 2015, Nano letters.
[34] Berinder Brar,et al. fT = 688 GHz and fmax = 800 GHz in Lg = 40 nm In0.7Ga0.3As MHEMTs with gm_max > 2.7 mS/µm , 2011, 2011 International Electron Devices Meeting.
[35] Xiuling Li,et al. III-V Junctionless Gate-All-Around Nanowire MOSFETs for High Linearity Low Power Applications , 2014, IEEE Electron Device Letters.
[36] Mengwei Si,et al. Effects of forming gas anneal on ultrathin InGaAs nanowire metal-oxide-semiconductor field-effect transistors , 2013 .
[37] L.-E. Wernersson,et al. Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.
[38] Injection velocity in thin-channel InAs HEMTs , 2011, IPRM 2011 - 23rd International Conference on Indium Phosphide and Related Materials.
[39] Donggun Park,et al. Investigation of nanowire size dependency on TSNWFET , 2007, 2007 IEEE International Electron Devices Meeting.
[40] K. Alam,et al. Electronic Properties and Orientation-Dependent Performance of InAs Nanowire Transistors , 2010, IEEE Transactions on Electron Devices.
[41] Lars-Erik Wernersson,et al. III–V compound semiconductor transistors—from planar to nanowire structures , 2014 .
[42] Arvind Kumar,et al. Silicon CMOS devices beyond scaling , 2006, IBM J. Res. Dev..
[43] M. Luisier,et al. Multiscale Metrology and Optimization of Ultra-Scaled InAs Quantum Well FETs , 2010, IEEE Transactions on Electron Devices.
[44] Stephanie Thalberg,et al. Fundamentals Of Modern Vlsi Devices , 2016 .
[45] Philippe Caroff,et al. Control of III–V nanowire crystal structure by growth parameter tuning , 2010 .
[46] G. Dewey,et al. Non-planar, multi-gate InGaAs quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications , 2010, 2010 International Electron Devices Meeting.
[47] Erik Lind,et al. High-Frequency Gate-All-Around Vertical InAs Nanowire MOSFETs on Si Substrates , 2014, IEEE Electron Device Letters.
[48] Mark S. Lundstrom. Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.
[49] K. Dick,et al. Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.
[50] M. Scheffler,et al. Diameter-dependent conductance of InAs nanowires , 2009, 0912.4509.
[51] I. Lauer,et al. Density scaling with gate-all-around silicon nanowire MOSFETs for the 10 nm node and beyond , 2013, 2013 IEEE International Electron Devices Meeting.
[52] J. Batey,et al. Unpinned GaAs MOS capacitors and transistors , 1988, IEEE Electron Device Letters.
[53] E. Lind,et al. High-Performance InAs Nanowire MOSFETs , 2012, IEEE Electron Device Letters.
[54] New insight into Fermi-level unpinning on GaAs: Impact of different surface orientations , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).
[55] E. Bakkers,et al. Epitaxial Growth of III-V Nanowires on Group IV Substrates , 2008 .
[56] T. Bryllert,et al. Vertical high-mobility wrap-gated InAs nanowire transistor , 2006, IEEE Electron Device Letters.
[57] GaAs MESFET With a High-Mobility Self-Assembled Planar Nanowire Channel , 2009, IEEE Electron Device Letters.
[58] Y. Xuan. Submicrometer inversion-type enhancement-mode InGaAs MOSFET with atomic-layer-deposited Al 2 O 3 as gate dielectric , 2014 .
[59] Jared J. Hou,et al. Surface roughness induced electron mobility degradation in InAs nanowires , 2013, Nanotechnology.
[60] D. Antoniadis,et al. A Novel Digital Etch Technique for Deeply Scaled III-V MOSFETs , 2014, IEEE Electron Device Letters.
[61] E. I. Givargizov. Fundamental aspects of VLS growth , 1975 .
[62] Xiuling Li,et al. Effect of diameter variation on electrical characteristics of Schottky barrier indium arsenide nanowire field-effect transistors. , 2014, ACS nano.
[63] Carl W. Wilmsen,et al. The Mos/InP interface , 1975 .
[64] E. Lind,et al. Development of a Vertical Wrap-Gated InAs FET , 2008, IEEE Transactions on Electron Devices.
[65] J. Hollingsworth,et al. The scaling of the effective band gaps in indium-arsenide quantum dots and wires. , 2008, ACS nano.
[66] E. Lind,et al. Band Structure Effects on the Scaling Properties of [111] InAs Nanowire MOSFETs , 2009, IEEE Transactions on Electron Devices.
[67] J. P. Hirtz,et al. The carrier mobilities in Ga0.47In0.53as grown by organo-mettalic CVD and liquid-phase epitaxy , 1981 .
[68] Chennupati Jagadish,et al. Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters. , 2010, Nano letters.
[69] E.J. Nowak,et al. The effective drive current in CMOS inverters , 2002, Digest. International Electron Devices Meeting,.
[70] M. J. Manfra,et al. III-V gate-all-around nanowire MOSFET process technology: From 3D to 4D , 2012, 2012 International Electron Devices Meeting.
[71] Ian A. Young,et al. Source/Drain Doping Effects and Performance Analysis of Ballistic III-V n-MOSFETs , 2015, IEEE Journal of the Electron Devices Society.
[72] B. R. Nag,et al. Electron transport in direct-gap III-V ternary alloys , 1981 .
[73] M. J. W. Rodwell,et al. Record Ion (0.50 mA/µm at VDD = 0.5 V and Ioff = 100 nA/µm) 25 nm-gate-length ZrO2/InAs/InAlAs MOSFETs , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.
[74] T. Shen,et al. High-performance surface channel In-rich In0.75Ga0.25As MOSFETs with ALD high-k as gate dielectric , 2008, 2008 IEEE International Electron Devices Meeting.
[75] Xiuling Li,et al. Relationship between planar GaAs nanowire growth direction and substrate orientation , 2013, Nanotechnology.
[76] Erik Lind,et al. Extrinsic and Intrinsic Performance of Vertical InAs Nanowire MOSFETs on Si Substrates , 2013, IEEE Transactions on Electron Devices.
[77] J. Baugh,et al. Temperature-dependent electron mobility in InAs nanowires , 2012, Nanotechnology.
[78] C. Auth,et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors , 2012, 2012 Symposium on VLSI Technology (VLSIT).
[79] T. Fukui,et al. A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.
[80] Robert M. Wallace,et al. Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinning , 2009 .
[81] D. Antoniadis,et al. Extraction of virtual-source injection velocity in sub-100 nm III–V HFETs , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).
[82] R. Chau,et al. Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..
[83] H. Morkoç,et al. Gate quality Si3N4/Si/n‐In0.53Ga0.47As metal‐insulator‐semiconductor capacitors , 1992 .
[84] Isabelle Ferain,et al. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.
[85] W. Seifert,et al. Diameter-dependent growth rate of InAs nanowires , 2007 .
[86] H. Morkoç,et al. Interface properties of Si3N4Si/n-GaAs metal-msulator-semiconductor structure using a Si interlayer , 1996 .
[87] E. Bakkers,et al. Surface passivated InAs/InP core/shell nanowires , 2010 .
[88] E. Lind,et al. Heterostructure Barriers in Wrap Gated Nanowire FETs , 2008, IEEE Electron Device Letters.
[89] M. J. Manfra,et al. 20–80nm Channel length InGaAs gate-all-around nanowire MOSFETs with EOT=1.2nm and lowest SS=63mV/dec , 2012, 2012 International Electron Devices Meeting.
[90] Ultrathin InAs nanowire growth by spontaneous Au nanoparticle spreading on indium-rich surfaces. , 2014, Nanoscale.
[91] J. Alamo. Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.
[92] High voltage gain MESFET amplifier using self-aligned MOCVD grown planar GaAs nanowires , 2013, 71st Device Research Conference.
[93] S. Narasimha,et al. 22nm High-performance SOI technology featuring dual-embedded stressors, Epi-Plate High-K deep-trench embedded DRAM and self-aligned Via 15LM BEOL , 2012, 2012 International Electron Devices Meeting.
[94] C. Merckling,et al. InGaAs MOS Transistors Fabricated through a Digital-Etch Gate-Recess Process and the Influence of Forming Gas Anneal on Their Electrical Behavior , 2012 .
[95] Peide D. Ye,et al. Effects of (NH4)2S passivation on the off-state performance of 3-dimensional InGaAs metal-oxide-semiconductor field-effect transistors , 2011 .
[96] Xin Miao,et al. Site-controlled VLS growth of planar nanowires: yield and mechanism. , 2014, Nano letters.
[97] Planar GaAs nanowire tri-gate MOSFETs by vapor–liquid–solid growth , 2014 .
[98] P. Ye,et al. Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric , 2006 .
[99] P. Piquini,et al. Diameter dependence of mechanical, electronic, and structural properties of InAs and InP nanowires: A first-principles study , 2010 .
[100] J. Plummer,et al. Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET's , 1997, IEEE Electron Device Letters.
[101] Joshua E-Y Lee,et al. Diameter dependence of electron mobility in InGaAs nanowires , 2013 .
[102] Erik Lind,et al. Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. , 2006, Nano letters.
[103] R. Chau,et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.
[104] Lin-wang Wang,et al. Band-structure-corrected local density approximation study of semiconductor quantum dots and wires , 2005 .
[105] P. D. Ye,et al. First experimental demonstration of gate-all-around III–V MOSFETs by top-down approach , 2011, 2011 International Electron Devices Meeting.
[106] Takashi Fukui,et al. Control of InAs nanowire growth directions on Si. , 2008, Nano letters.
[107] Xiaocheng Jiang,et al. InAs/InP radial nanowire heterostructures as high electron mobility devices. , 2007, Nano letters.
[108] P. D. Ye,et al. Main determinants for III-V metal-oxide-semiconductor field-effect transistors ( invited ) , 2014 .
[109] M. J. W. Rodwell,et al. Record extrinsic transconductance (2.45 mS/µm at VDS = 0.5 V) InAs/In0.53Ga0.47As channel MOSFETs using MOCVD source-drain regrowth , 2013, 2013 Symposium on VLSI Technology.
[110] Peter Chen,et al. 50-nm E-mode In0.7Ga0.3As PHEMTs on 100-mm InP substrate with fmax > 1 THz , 2010, 2010 International Electron Devices Meeting.
[111] Dae-Hyun Kim,et al. Scalability of Sub-100 nm InAs HEMTs on InP Substrate for Future Logic Applications , 2010, IEEE Transactions on Electron Devices.
[112] Chennupati Jagadish,et al. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.